首页|基于协同过滤的农业平台学习资源个性化推荐方法探究

基于协同过滤的农业平台学习资源个性化推荐方法探究

扫码查看
由于传统方法未对不同用户之间的行为数据进行考虑,导致资源推荐满意度较低.为解决这一问题,提出基于协同过滤的农业平台学习资源个性化推荐方法研究.研究先引入影响值参数——Inf来表示不同关联用户之间影响关系的大小;然后,对时序评论和回复行为数据进行融合,构建农业平台用户资源兴趣矩阵;最后,以此为基础,采用协同过滤方式实现资源推荐.经过测试后,发现所提方法具有良好的推荐效果,可以有效保障用户对推荐资源的满意度.
Exploration of Personalized Recommendation Method of Agricultural Platform Learning Resources Based on Collaborative Filtering
Due to the lack of consideration of behavioral data between different users in traditional methods,the sat-isfaction with resource recommendations is relatively low.To address this issue,a personalized recommendation method for learning resources on agricultural platforms based on Collaborative Filtering is proposed.This study first introduces Influence Value Parameter-Inf,to represent the size of the influence relationship between different as-sociated users.Then,the sequential comment and reply behavior data are fused to construct an agricultural platform user resource interest matrix.Finally,based on this,Collaborative Filtering method is used to achieve resource rec-ommendation.After testing,it is found that the proposed method has good recommendation performance and can effectively ensure user satisfaction with recommendation resources.

Collaborative FilteringAgricultural platformLearning resourcesPersonalized recommendationUser portraitInfluence Value ParameterResource interest matrixInterdisciplinary interest resources

徐远宏

展开 >

河南科技学院信息工程学院 河南新乡 453000

协同过滤 农业平台 学习资源 个性化推荐 用户画像 影响值参数 资源兴趣矩阵 兴趣资源交叉

2024

科技资讯
北京国际科技服务中心 北京合作创新国际科技服务中心

科技资讯

影响因子:0.51
ISSN:1672-3791
年,卷(期):2024.22(16)