首页|基于少量缺陷样本的带钢表面缺陷检测方法

基于少量缺陷样本的带钢表面缺陷检测方法

扫码查看
带钢在生产过程中受到工艺或设备等因素的影响,在表面产生了压伤、滴焦油等缺陷.提出了一种只需要少量的缺陷样本来训练生成对抗网络模型.模型通过学习大量的无缺陷图像数据分布特征,再引入少部分的缺陷图像来进行对比,模型可以学习和掌握无缺陷图像和有缺陷图像的分布情况,更有利于缺陷检测.为了使模型稳定,在损失函数中添加抽离项和多样性比因子,并加入优化特征的范数来稀疏模型,从而减少无用特征的干扰.提出的方法对带钢表面缺陷检测的精度达到了95%.
Surface Defect Detection Method for Strip Steel Based on a Few Defect Samples
During the production process,strip steel is affected by factors such as process or equipment,resulting in surface defects such as crush and drops tar.The generative adversarial network model is proposed that only requires a few defective samples to training.The model learns the distribution characteristics of a large amount of defect-free image data,and then adds a few defect images for comparison,the model can learn the distribution of defect-free images and defective images,which is more conducive to defect detection.In order to improve the stability of the model,the pull-away term(PT)and diversity ratio factors are added to the loss function.And add the norm of optimized features to sparse the model and reduce the interference of useless features.The method proposed achieves an accuracy of 95%for surface defect detection of strip steel.

Defect detectionImage processingGenerative adversarial networksSupport vector machine

李爱梅、王芳、于静、刘冀伟、王硕朋

展开 >

北京科技大学天津学院 天津 301811

天津商业大学信息工程学院 天津 300134

缺陷检测 图像处理 生成对抗网络 支持向量机

2023年全国高等院校计算机基础教育研究会计算机基础教育教学研究项目

2023-AFCEC-138

2024

科技资讯
北京国际科技服务中心 北京合作创新国际科技服务中心

科技资讯

影响因子:0.51
ISSN:1672-3791
年,卷(期):2024.22(19)
  • 2