科技资讯2024,Vol.22Issue(19) :54-56.DOI:10.16661/j.cnki.1672-3791.2404-5042-9125

基于自编码器的高效信息化测绘处理研究

Research on Efficient Information Surveying and Mapping Processing Based on Autoencoder

刘颖
科技资讯2024,Vol.22Issue(19) :54-56.DOI:10.16661/j.cnki.1672-3791.2404-5042-9125

基于自编码器的高效信息化测绘处理研究

Research on Efficient Information Surveying and Mapping Processing Based on Autoencoder

刘颖1
扫码查看

作者信息

  • 1. 广东省国土资源测绘院 广东广州 510663
  • 折叠

摘要

随着人工智能技术的发展,信息化测绘正逐渐迈向智能化.为了对信息化测绘数据进行清洗,研究采用了堆叠降噪自编码器,并引入了粒子群算法,来对该自编码器中的超参数进行寻优,以降低超参数对堆叠降噪自编码器性能的影响.结果显示,寻优后,堆叠降噪自编码器的相对误差百分比、均方根误差、平均绝对误差和平均百分比误差分别为1.06%、0.525%、0.315%和0.570%.该自编码器能够对测绘数据进行更好的清洗,误差更小,提高了数据质量.

Abstract

With the development of Artificial Intelligence(AI)technology,information surveying and mapping is gradually moving towards intelligence.In order to clean information surveying and mapping data,a stacked denois-ing autoencoder was adopted in the research,and particle swarm optimization algorithm was introduced to optimize the hyperparameters in the autoencoder to reduce the impact of hyperparameters on the performance of the stacked denoising autoencoder.The results showed that the relative error percentage,root mean square error,average abso-lute error,and average percentage error of the stacked denoising autoencoder after optimization were 1.06%,0.525%,0.315%,and 0.570%,respectively.This autoencoder can perform better cleaning on surveying data,reduce errors,and improve data quality.

关键词

自编码器/堆叠/降噪/测绘/数据清洗

Key words

Autoencoder/Stacking/Noise reduction/Surveying and mapping/Data clean

引用本文复制引用

出版年

2024
科技资讯
北京国际科技服务中心 北京合作创新国际科技服务中心

科技资讯

影响因子:0.51
ISSN:1672-3791
段落导航相关论文