首页|基于TinyML的猫咪动作识别方法

基于TinyML的猫咪动作识别方法

扫码查看
针对国内宠物用品市场产品功能单一的问题,设计了一款可以识别猫咪奔跑、跳跃、翻转3种运动状态的设备.借助开源电子平台Arduino,使用陀螺仪和加速度传感器对猫咪的运动状态数据进行采集,并使用深度学习框架TensorFlow进行训练,通过微型机器学习(Tiny Machine Learning,TinyML)技术压缩模型参数,使模型部署到开发板上.通过试错法找到训练效果最佳的模型结构,最终实现对猫咪运动状态识别的准确率达到90%以上.
Cat Action Identification Method Based on TinyML
Aiming at the problem of single product functions in the domestic pet supplies market,this paper designs a device that can identify the three motion states of running,jumping and flipping.Using the open-source elec-tronic platform Arduino,gyroscope and accelerometer sensors are used to collect motion state data of cats,and the deep learning framework TensorFlow is used for training.It compresses model parameters through Tiny Machine Learning(TinyML)technology to deploy the model on the development board.Finally,by using the trial and error method to find the model structure with the best training effect,the accuracy rate of identifying the action state of cats can ultimately reached more than 90%.

TinyMLAction state identificationModel buildingModel training

刘轶群、刘思进、王慧

展开 >

湖北工业大学电气与电子工程学院 湖北武汉 430068

微型机器学习 运动状态识别 模型搭建 模型训练

2024

科技资讯
北京国际科技服务中心 北京合作创新国际科技服务中心

科技资讯

影响因子:0.51
ISSN:1672-3791
年,卷(期):2024.22(19)
  • 2