首页|基于LBD-WA反馈提升的空调智能控制方法研究

基于LBD-WA反馈提升的空调智能控制方法研究

扫码查看
为了解决传统空调温度控制方法在满足不同用户、不同场景需求时的局限性,提出了一种空调智能温度控制算法.此算法通过结合多元线性回归(Linear Regression)的趋势预测、贝叶斯网络(Bayesian Net-work)的室内外环境突变修正和决策树(Decision Tree)的用户体征修正,形成了一个综合考虑多种因素的温度调节模型,再通过三合一修正的加权平均(Weighted Average)方法,成为LBD-WA反馈提升模型.该模型不仅能够考虑实时的环境变化,还可以根据用户的温感和所处时区季节做出相应调整,从而更准确地为用户提供舒适的温度环境.为了验证该算法的效果,将此模型与其他机器学习方法进行了对比实验.结果显示:LBD-WA模型在预测准确性和多场景适应性方面表现优异,LBD-WA模型在准确率方面比传统空调方法提高了6%,这为未来智能家居的温控技术提供了一个新的方向.
Research on Intelligent Control Method for Air Conditioning Based on LBD-WA Feedback Enhancement
This article proposes an intelligent temperature and air conditioning control algorithm to address the limitations of traditional air conditioning temperature control methods in meeting the diverse needs of different us-ers and scenarios.The algorithm combines trend prediction using Multiple Linear Regression,environmental change correction using Bayesian network,and user characteristic correction using Decision Tree to form a tem-perature adjustment model that comprehensively considers multiple factors.By using the Weighted Average method with three in one correction,and becomes the LBD-WA feedback enhancement model.It not only considers real-time environmental changes but also adjusts according to the user's temperature preferences and seasonal changes in their time zone to provide a more accurate and comfortable temperature environment.To validate the effectiveness of this algorithm,comparative experiments were conducted between this model and other machine learning meth-ods.The results show that the LBD-WA model performs well in terms of prediction accuracy and adaptability to multiple scenarios,with a 6%improvement in accuracy compared to traditional air conditioning methods.This pro-vides a new direction for temperature control technology in future smart homes.

Multiple feedback correctionMultiple Linear RegressionBayesian networkDecision TreeAbnormal adjustment feedbackTime zone and seasonal feedbackPhysiological change feedback

吕闯、庞敏、刘普

展开 >

广东美的制冷设备有限公司 广东 佛山 528300

多重反馈修正 多元线性回归 贝叶斯网络 决策树 异常调节反馈 时区季节反馈 体征变化反馈

2024

科技资讯
北京国际科技服务中心 北京合作创新国际科技服务中心

科技资讯

影响因子:0.51
ISSN:1672-3791
年,卷(期):2024.22(23)