首页|基于Mask R-CNN模型的红外灰度图像坝体渗水区域快速检测的技术研究

基于Mask R-CNN模型的红外灰度图像坝体渗水区域快速检测的技术研究

扫码查看
随着水利工程中坝体安全问题的日益严峻,高效、精准地检测坝体渗水区域成为保障坝体结构安全的关键.红外灰度图像因其对温度变化敏感已逐渐成为渗水区域检测的重要工具.因此,提出了一种基于掩膜区域的卷积神经网络(Mask Region-Based Convolutional Neural Network,Mask R-CNN)的红外灰度图像坝体渗水区域快速检测方法,此方法通过区域提议网络(Region Proposal Network,RPN)和RoIAlign等核心技术,实现对渗水区域的精确定位与像素级分割,并结合噪声抑制和图像增强技术,进一步提升了检测的精度与鲁棒性.通过与传统算法的对比实验,验证了所提方法在复杂背景下的检测优越性.实验结果表明:Mask R-CNN模型不仅在精度和检测效率上显著优于阈值分割和边缘检测等传统方法,同时在渗水区域边界细节的捕捉上具备更强的适应性.
Research on the Technology of Rapid Detection of Dam Seepage Areas Using Infrared Grayscale Images Based on Mask R-CNN Model
With the increasingly severe safety issues of dam bodies in hydraulic engineering,how to efficiently and accurately detect the seepage area of dam bodies has become the key to ensuring the structural safety of dam bodies.Infrared grayscale images have gradually become an important tool for detecting water seepage areas due to their sensitivity to temperature changes.This article proposes a rapid detection method for seepage areas in infrared gray-scale images of dam bodies based on Mask Region-Based Convolutional Neural Network(Mask R-CNN).This method achieves precise localization and pixel level segmentation of seepage areas through core technologies such as Region Proposal Network(RPN)and RoIAlign,and combines noise suppression and image enhancement tech-niques to further improve the accuracy and robustness of detection.Through comparative experiments with tradi-tional algorithms,the superiority of the proposed method in detecting complex backgrounds has been verified.The experimental results show that the Mask R-CNN model not only significantly outperforms traditional methods such as threshold segmentation and edge detection in terms of accuracy and detection efficiency,but also has stron-ger adaptability in capturing boundary details of water seepage areas.

Mask R-CNN modelInfrared grayscaleDam seepage areaRapid detection

黄佳一、詹燕坤

展开 >

水口发电集团有限公司 福建 福州 350000

Mask R-CNN模型 红外灰度 坝体渗水区域 快速检测

2024

科技资讯
北京国际科技服务中心 北京合作创新国际科技服务中心

科技资讯

影响因子:0.51
ISSN:1672-3791
年,卷(期):2024.22(23)