首页|基于关注者贡献量化的传播行为特征分析与影响力判断方法研究

基于关注者贡献量化的传播行为特征分析与影响力判断方法研究

扫码查看
通过分析短视频网站的视频转发数据,提出一种用户个体影响力的判断和计算方法,进行了活跃用户群体的转发特征统计实验,对分析电商用户行为和社交舆情传播具有重要意义.结果表明,高影响力和低影响力个体的粉丝数和追随者数量几乎没有相关性;当影响力达到一定值时,粉丝和追随者的数量具有强相关性;高影响力的用户转发相同短视频的频率一般都较低,其转发对象的分布律一般较高;与粉丝互动的频率因个人认证名人用户、企业、媒体机构和其他认证用户的需求而异;当短视频形成广泛传播趋势时,转发数量非常接近评论数量,甚至显著超过评论数量,而对评论的答复数量与个人影响力之间没有显著相关性.
Research on Dissemination Behavior Characteristics Analysis and Influence Judgment Methods Based on Followers'Contribution Quantification
By analyzing video forwarding data from short video websites,this paper proposes a method to assess and calculate the individual influence of users,conductes a statistical experiment on the forwarding characteristics of ac-tive user groups,which is of great significance for analyzing e-commerce user behavior and social public opinion dissemination.The results reveal that there is virtually no correlation between the number of fans and followers of individuals with high or low influence;When the influence reaches a certain threshold,there is a strong correlation between the number of fans and followers;Users with high influence generally exhibit a lower frequency of for-warding the same short video,yet their distribution of forwarding targets tends to be more diverse.The frequency of interaction with fans differs based on the needs of individual verified celebrity users,businesses,media organizations,and other verified entities.When short videos form a trend of widespread dissemination,the number of forwards is very close to the number of comments,or even significantly surpasses it,while there is no significant correlation be-tween the number of replies to comments and personal influence.

Individual influenceGroup behaviorFollowersFansDissemination behavior characteristics

黄昊晶、陆飞、曹德安

展开 >

广东开放大学(广东理工职业学院)工程技术学院 广东 广州 510091

个体影响力 群体行为 关注者 粉丝 传播行为特征

2024

科技资讯
北京国际科技服务中心 北京合作创新国际科技服务中心

科技资讯

影响因子:0.51
ISSN:1672-3791
年,卷(期):2024.22(23)