首页|深度学习背景下的目标检测技术探究

深度学习背景下的目标检测技术探究

扫码查看
目标检测技术在计算机视觉领域中占据了重要地位,随着深度学习的兴起,该领域取得了显著进展.从传统手工检测方法到现代目标检测方法,从早期的基于候选区域的R-CNN系列到单阶段的YOLO系列,再到加入Transformer架构的DETR系列等,目标检测技术随科技进步而更新.对主流算法进行介绍,对比了不同算法在精度、速度、资源消耗等方面的优劣,最后探讨了目标检测面临的挑战与未来的发展方向.
Exploration of Target Detection Technology Under the Background of Deep Learning
Target detection technology occupies an important position in the field of computer vision,and it has made significant progress with the rise of deep learning.From traditional manual detection methods to modern tar-get detection methods,from the early R-CNN series based on candidate regions to the single-stage YOLO series,and then to the DETR series with the addition of the Transformer architecture,target detection technology has been updated with the advancement of science and technology.This paper introduces of mainstream algorithms,compare the advantages and disadvantages of different algorithms in terms of accuracy,speed,resource consumption were compared.Finally,the challenges faced by target detection and future development directions are discussed.

Deep learningTarget detectionOne-stage detectionTwo-stage detection

黄天才、陈博、张筱晨

展开 >

西华大学机械工程学院 四川 成都 610039

深度学习 目标检测 一阶段检测 两阶段检测

2024

科技资讯
北京国际科技服务中心 北京合作创新国际科技服务中心

科技资讯

影响因子:0.51
ISSN:1672-3791
年,卷(期):2024.22(24)