首页|基于视觉图神经网络的人脸识别方法研究

基于视觉图神经网络的人脸识别方法研究

扫码查看
近年来,随着深度学习技术的飞速发展,一种基于视觉图神经网络(Visual Graph Neural Network,VGNN)的人脸识别方法受到了广泛关注.VGNN是近年来兴起的一种深度学习方法,它把图像表示成图结构,并通过神经网络来学习图像的特征与关系.在人脸识别领域,图像神经网络(Graph Neural Network,GNN)能够通过学习人脸图像间的相互关系,从而完成人脸识别任务.首先,介绍了GNN的基本理论与体系结构;其次,详细阐述了基于视觉图的神经网络模型的体系结构与训练方法,并进行了实验验证.研究成果可为后续的人脸识别研究提供借鉴与参考.
Research on Facial Recognition Method of Visual Graph Neural Network
In recent years,with the rapid development of deep learning technology,a facial recognition method based on Visual Graph Neural Networks(VGNN)has attracted extensive attention.VGNN is a deep learning method that has emerged in recent years.It represents images as graph structures and learns the characteristics and re-lationships of images through neural networks.In the field of facial recognition,the Graph Neural Network(GNN)can complete the task of face recognition by learning the relationship between face images.Firstly,the basic theory and architecture of GNN are introduced;Secondly,the architecture and training method of neural network model based on visual graphs are expounded in detail,and the experimental verification is carried out.The research achievements can provide reference and guidance for the subsequent facial recognition research.

Facial recognitionGraph neural networkSpatial multi-scaleAttention mechanism

汤文昊

展开 >

黑龙江工商学院 黑龙江 哈尔滨 150025

人脸识别 图神经网络 空间多尺度 注意力机制

2024

科技资讯
北京国际科技服务中心 北京合作创新国际科技服务中心

科技资讯

影响因子:0.51
ISSN:1672-3791
年,卷(期):2024.22(24)