首页|基于改进蚁群算法的破碎机设备故障预测研究

基于改进蚁群算法的破碎机设备故障预测研究

扫码查看
破碎机在恶劣环境下产生故障的特征值很难被提取,因此,故障预测率低、误判率高.基于此,提出改进蚁群算法的预测方法.首先,采集基础数据和振动信号、温度、压力等原始数据.其次,对数据进行整合并归类,去除噪声,并填补缺失值,筛选异常值,采用归一化的处理方式进行数据转换,利用标准差来表征数据的基本特征值.最后,结合改进蚁群算法,设计破碎机设备故障预测处理模型.经实验,该方法的预测误判率平均为12.6%,因此,设计方法有效提高了故障预测率、降低了误判率.
Research on Equipment Fault Prediction of Crusher Based on Improved Ant Colony Algorithm
The characteristic values of faults generated by crushers in harsh environments are difficult to extract,re-sulting in low fault prediction rates and high misjudgment rates.Based on this,an improved ant colony algorithm prediction method is proposed.First,collect basic data and raw data such as vibration signals,temperature,and pres-sure.Second,integrate and classify data,remove noise,fill in missing values,screen for outliers,use normalization processing,and perform data transformation,use standard deviation to characterize the basic characteristic values of data.Finally,combined with the improved ant colony algorithm,a fault prediction and handling model for crusher equipment is designed.Through experiments,the average prediction misjudgment rate of this method is 12.6%.Therefore,the design method effectively improves the fault prediction rate and reduces the misjudgment rate.

Improved ant colony algorithmEquipment sensingFault predictionAbnormal data collection

豆旭、刘桂平

展开 >

江西铜业集团有限公司永平铜矿 江西 上饶 334000

改进蚁群算法 设备感应 故障预测 异常数据采集

2024

科技资讯
北京国际科技服务中心 北京合作创新国际科技服务中心

科技资讯

影响因子:0.51
ISSN:1672-3791
年,卷(期):2024.22(24)