科技资讯2024,Vol.22Issue(24) :244-246.DOI:10.16661/j.cnki.1672-3791.2409-5042-6507

"线性代数"教学中矩阵特征值求解探讨

Discussion of Matrix Eigenvalue Solution in Linear Algebra Teaching

马生昀 黄沙日娜 徐丽阳
科技资讯2024,Vol.22Issue(24) :244-246.DOI:10.16661/j.cnki.1672-3791.2409-5042-6507

"线性代数"教学中矩阵特征值求解探讨

Discussion of Matrix Eigenvalue Solution in Linear Algebra Teaching

马生昀 1黄沙日娜 1徐丽阳1
扫码查看

作者信息

  • 1. 内蒙古农业大学理学院 内蒙古 呼和浩特 010018
  • 折叠

摘要

特征值是线性代数的重要知识点,是方阵对角化和二次型标准化的基础,在许多领域的理论和实践中有重要的应用.n阶方阵的特征值计算包括求解特征多项式|A-λE|和特征方程|A-λE|=0这两步.求解特征多项式相当于求解一个含有变量λ的n阶行列式,求解特征方程相当于求解一个一元n次方程,一般情况下计算比较烦琐.针对几个特征值计算进行演示,首先讨论特征值计算的基本方法,然后给出几种具有特殊性矩阵的特征值计算技巧.同时,为了运用这些计算技巧,需要熟练掌握行列式、矩阵、特征值和特征向量的相关性质,并能够洞察特征多项式和特征方程求解中的特殊性,从而能够简洁、准确地得出特征值.

Abstract

Eigenvalue is important knowledge points in linear algebra,serving as the foundation for matrix diagonal-ization and standardization of the quadratic form,and have significant applications in theory and practice in many fields.The eigenvalue calculation of an n-order square matrix involves two steps:solving the characteristic polyno-mial|A-λE|and the characteristic equation|A-λE|=0.Solving characteristic polynomial is equivalent to solving an n-order determinant containing variables,while solving characteristic equations is equivalent to solving an one dimension equation of the n-degree,which is generally computationally cumbersome.Using several examples to demonstrate the calculation of eigenvalues.Firstly,the basic method of eigenvalue calculation is discussed,and then several techniques for eigenvalue calculation with special matrices are provided.At the same time,to apply these computational techniques,proficiency in the properties of determinants,matrices,eigenvalues and eigenvectors is re-quired,the particularities of solving characteristic polynomials and equations can be perceived,so as to obtain eigen-values concisely and accurately.

关键词

特征值/特征多项式/因式分解/矩阵的迹/矩阵的秩

Key words

Eigenvalue/Characteristic polynomial/Factorization/Trace of matrix/Rank of matrix

引用本文复制引用

出版年

2024
科技资讯
北京国际科技服务中心 北京合作创新国际科技服务中心

科技资讯

影响因子:0.51
ISSN:1672-3791
段落导航相关论文