首页|基于多尺度融合与残差双注意力的点云分类

基于多尺度融合与残差双注意力的点云分类

扫码查看
由于点云的无序性、稀疏性、信息有限性,深度学习方法难以充分获取点与点之间的复杂相关性,存在分类精度受限和鲁棒性欠佳的问题.对此,提出一种新的点云分类方法DGCMR.使用多尺度动态图卷积融合多个尺度的特征,提取更精细且全面的特征;构造具有残差结构的双注意力模块,在重要通道和关键局部邻域上,增强有用特征并抑制冗余信息,提升特征表达能力并解决网络退化问题;拼接最大池化与平均池化的结果,弥补单一池化造成的信息缺失,通过全连接层得到最终分类结果.实验结果表明,该模型在数据集ModelNet40、ModelNe10上的总体精度分别达到93.7%、95.0%,鲁棒性更强,优于当前先进方法,在参数生成量方面,该模型相较于PointNet、DGCNN分别下降52.3%、7.9%,取得了较好的轻量化结果,能够更好地应用于嵌入式三维扫描设备.
Point Cloud Classification Based on Multi-scale Fusion and Residual Dual Attention
Due to the disorder,sparsity,and limited information of point clouds,deep learning methods find it difficult to fully capture the complex correlations between points,resulting in limited classification accuracy and poor robustness.A new point cloud classification method DGCMR is proposed for this purpose,including using multi-scale dynamic graph convolution to fuse features from multiple scales,extracting more refined and comprehensive features,construct a dual attention module with residual structure,enhancing useful features and suppressing redundant information on important channels and key local neighborhoods,improving feature expression ability,and solving network degradation problems,combining the results of maximum pooling and average pooling to compensate for the information loss caused by single pooling,and obtaining the final classification result through a fully connected layer.The experimental results show that the overall accuracy of the model on the datasets ModelNet40 and ModelNet10 reaches 93.7%and 95.0%,respectively,with stronger robustness and better performance than current advanced methods.In terms of parameter generation,the model has decreased by 52.3%and 7.9%compared to PointNet and DGCNN,respectively,achieving better lightweight results and can be better applied to embedded 3D scanning devices.

point cloud classificationrobustnessmulti-scale featuresdouble attentionfeature enhanceme

蔡俊民、梁正友、欧阳正超、孙宇

展开 >

广西中烟工业有限责任公司南宁卷烟厂,广西南宁 530001

广西大学计算机与电子信息学院,广西南宁 530004

广西大学广西多媒体通信与网络技术重点实验室,广西南宁 530004

点云分类 鲁棒性 多尺度特征 双注意力 特征增强

2024

昆明学院学报
昆明学院

昆明学院学报

CHSSCD
影响因子:0.167
ISSN:1674-5639
年,卷(期):2024.46(6)