首页|基于初始种群优化策略的虚拟机整合算法

基于初始种群优化策略的虚拟机整合算法

扫码查看
基于种群更新策略的启发式算法是解决多目标虚拟机整合问题的常用算法.然而,多数这类算法未考虑到初始种群的优化问题,存在收敛慢的问题.为解决此慢收敛问题,以遗传算法为例,提出了一种多目标敏感的初始种群优化方法,其核心思想是分析各目标的资源特性,建立优化初始种群的约束模型,提高初始种群的质量.仿真实验结果表明,该方法能显著提升遗传算法的搜索性能,且优于其他两种对比的改进策略.
Algorithm for Virtual Machine Consolidation Based on Initial Population Optimization Strategy
Heuristic algorithms based on population updating strategies are commonly used for solving multi-objective virtual machine consolidation problems.However,most of these algorithms do not consider the optimization of the initial population,leading to slow convergence.To address this slow convergence issue,this paper takes the genetic algorithm as an example and proposes a multi-objective sensitive initial population generation method,with the core idea of analyzing the resource characteristics of each target and establishing a constrained model for optimizing the initial population and improving its quality.Experimental results show that this method significantly improves the search performance of the genetic algorithm,and is better than the other two improved strategies.

virtual machine consolidationgenetic algorithminitial populationbin-packing

张嵘、利海燕

展开 >

昆明学院信息工程学院,云南 昆明 650214

虚拟机整合 遗传算法 初始种群 装箱

2024

昆明学院学报
昆明学院

昆明学院学报

CHSSCD
影响因子:0.167
ISSN:1674-5639
年,卷(期):2024.46(6)