首页|基于改进ResNet50网络的泥石流沟谷识别

基于改进ResNet50网络的泥石流沟谷识别

扫码查看
针对传统神经网络进行泥石流沟谷图像分类时,可能出现准确率不高、提取图像特征较差、边缘模糊等问题,对ResNet50网络进行改进.在ResNet50网络部分残差块前加入注意力机制模块,使其具有更高的性能和准确性,可以精确捕捉到泥石流沟谷图像中的地形地貌.试验结果表明,改进后的ResNet50网络在泥石流沟谷图像的分类准确率达到83.02%,其分类性能在ResNet50网络的基础上提升了 11.32个百分点,且准确率、召回率、精确率、F1值和AUC值等各项指标均优于ResNet50网络和其他深度学习识别算法.
Debris Flow Gully Identification Based on Improved ResNet50 Network
Traditional convolutional neural networks have problems such as low accuracy,poor image feature extraction and blurred edges when used for landslide disaster valley image classification.This paper improves the ResNet50 network by adding a CBAM attention mechanism module before some residual blocks of the ResNet50 network,which enables it to have higher performance and accuracy and accurately capture the terrain and landforms in landslide disaster valley images.The experimental results show that the improved ResNet50 network achieves a classification accuracy of 83.02%for landslide disaster valley images,which improves its classification performance by 11.32 percentage points compared to the ResNet50 network.Moreover,its accuracy,recall rate,precision rate,F1 value,and AUC value are better than those of the ResNet50 network and other deep learning recognition algorithms.

attention mechanismconvolutional neural networkdebris flow disasterResNet50

刘秋雨、王保云

展开 >

云南师范大学数学学院,云南 昆明 650500

云南师范大学云南省现代分析数学及应用重点实验室,云南 昆明 650500

注意力机制 卷积神经网络 泥石流灾害 ResNet50

2024

昆明学院学报
昆明学院

昆明学院学报

CHSSCD
影响因子:0.167
ISSN:1674-5639
年,卷(期):2024.46(6)