首页|基于姿态估计与深度图像的啦啦操运动员动作捕捉方法设计

基于姿态估计与深度图像的啦啦操运动员动作捕捉方法设计

扫码查看
为了对啦啦操运动员的动作进行有效的捕捉与识别,提出一种基于姿态估计与深度图像(PE-DI)的啦啦操运动员动作捕捉方法.该方法采用深度摄像头收集啦啦操运动员的运动数据,并通过利用深度图像来增强三维空间的动作重建效果,接着利用姿态估计算法分析运动员的动作精度和稳定性.结果显示,动作识别率对比中,PE-DI算法、NN-BV算法、SPR-DL算法与Multi-Scale Feature算法在五次实验中的平均识别率分别为99.24%、97.18%、94.16%与90.21%.最后PE-DI算法运行下啦啦操运动员起势、跳跃、鞠躬与转身四个动作的均被捕捉划分于正确区域内,显著优于其他算法.实验结果表明,PE-DI算法能够对啦啦操运动员的动作进行较高精度的捕捉,为啦啦操运动员的训练与表演提供有效的技术支持.
Design of Motion Capture Methods of Cheerleaders Based on Posture Estimation and Depth Image
To effectively capture and identify cheerleaders'movements,the experiment suggests a method of capturing cheerleaders'motion based on pose estimation and depth images(PE-DI).This method is to collect the movement data of cheerleaders by a depth camera,enhance the action reconstruction effect in three-dimensional space through depth images,and then uses a posture estimation algorithm to analyze the accuracy and stability of cheerleaders'movements via a posture estimation algorithm.The results show that in the comparison of motion recognition rates,the average recognition rates of the PE-DI algorithm,NN-BV algorithm,SPR-DL algorithm and Multi-Scale Feature algorithm in five experiments were 99.24%,97.18%,94.16%and 90.21%.Finally,when the PE-DI algorithm was run,the four movements of cheerleaders,jumping,bowing and turning were all captured and divided into the correct areas,which means the algorithm is significantly better than others.The above results all show that the use of PE-DI algorithm can more precisely capture the movements of cheerlers,thus providing effective technical support for the training and performance of cheerleaders.

pose estimationdepth imagescheerleadingmotion captureathlete

温小娇

展开 >

滁州城市职业学院 体育教学部,安徽滁州 239000

姿态估计 深度图像 啦啦操 动作捕捉 运动员

安徽省高等学校科学研究重点项目

2023AH052838

2024

喀什大学学报
喀什师范学院

喀什大学学报

CHSSCD
影响因子:0.178
ISSN:2096-2134
年,卷(期):2024.45(3)