首页|基于图神经网络(GNN)的漏洞检测算法及应用研究

基于图神经网络(GNN)的漏洞检测算法及应用研究

扫码查看
为提高漏洞检测的准确性,提升软件运行的安全,基于图神经网络(GNN)提出一种漏洞检测算法,并对其具体应用效果进行分析.在此基础上,运用图神经网络(GNN)对特征进行分类,输出漏洞检测的结果.结果表明,提出的漏洞检测算法能更准确地识别真实的漏洞,减少将正常代码错误地标记为漏洞的情况.
Research on Vulnerability Detection Algorithm and Application Based on Graph Neural Network(GNN)
To improve the accuracy of vulnerability detection and enhance the security of software operation,a vulnerability detection algorithm based on graph neural network(GNN)is proposed,and its specific application effect is analyzed On this basis,graph neural networks(GNNs)are used to classify features and output vulnerability detection results The results indicate that the proposed vulnerability detection algorithm can more accurately identify real vulnerabilities and reduce the situation of mislabeling normal code as vulnerabilities.

graph neural networkloopholetestingalgorithmpattern

哈焱

展开 >

蚌埠学院计算机与信息工程学院,安徽 蚌埠 233030

图神经网络 漏洞 检测 算法 模式

2024

喀什大学学报
喀什师范学院

喀什大学学报

CHSSCD
影响因子:0.178
ISSN:2096-2134
年,卷(期):2024.45(6)