首页|基于微震多维信息融合的冲击地压全时空预测方法

基于微震多维信息融合的冲击地压全时空预测方法

扫码查看
为解决当前冲击地压时间与空间预测协同难、微震数据时空特征挖掘不充分的困境,结合深度学习相关理论与方法,提出了基于微震多维信息融合的冲击地压全时空预测方法,该方法主要包括微震时空特征指标、时间预测以及空间预测3个模块,设计了基于主成分分析和核密度估计的微震时空特征指标构建方法,在此基础之上,构建了基于深度循环神经网络的冲击地压时间预测模型,提出了基于长短期时间窗融合的冲击地压空间预测方法,从而实现了冲击地压时间-空间协同的全时空预测.此外,为了评估所提方法的有效性,在内蒙古鄂尔多斯矿区某冲击危险工作面进行了工程应用测试,测试时间段共出现13条大于105 J的大能量微震事件,在时间预测方面,对于大能量事件的时间预测结果为10个强危险、3个中等危险,并且整个测试阶段模型误报率仅为0.133.在空间预测方面,对于大能量事件的空间预测结果的分布区域为6个强危险、3个中等危险、4个弱危险.实验表明该方法可满足工程应用的需求,研究成果可为冲击地压监测预警提供参考与借鉴.
A spatio-temporal prediction method for coal burst based on the fusion of microseismic multidimensional information
It is difficult to cooperate temporal and spatial prediction of coal burst and spatio-temporal feature mining of massive microseismic data are insufficient.A spatio-temporal prediction method for coal burst is proposed based on the fusion of microseismic multidimensional information with the relevant theories and methods of deep learning.The process mainly includes three modules:microseismic spatio-temporal characteristic index,temporal prediction and spatial prediction.Microseismic spatio-temporal characteristic index method is based on principal component analysis and kernel density estimation,with which temporal prediction model of coal burst based on deep recurrent neural network is constructed,and spatial prediction method of coal burst based on the fusion of long and short time windows is pro-posed,thus realizing the spatio-temporal prediction of coal burst with spatio-temporal coordination.To e-valuate the effectiveness of the method,engineering application tests are conducted on a hazardous work-ing face in the Ordos mining area of the Inner Mongolia Autonomous Region.During the test,13 large energy events(microseismic events with energy greater than 105 J)occur.In temporal prediction,the prediction results are 10 strong hazards and 3 medium hazards,and the false positive rate of the model is only 0.133.In temporal prediction,the distribution region of large energy events corresponds to 6 strong hazards,3 medium hazards and 4 weak hazards.The test results show that the method can meet the spa-tio-temporal requirements of engineering application,and the research results can provide a paradigm for spatio-temporal prediction of coal burst source.

coal burstspatio-temporal predictionmicroseismicspatio-temporal characteristic indexdeep recurrent neural network

杨旭、刘亚鹏、曹安业、刘耀琪、王常彬、赵卫卫

展开 >

中国矿业大学计算机科学与技术学院,矿山数字化教育部工程研究中心,江苏 徐州 221116

中国矿业大学矿业工程学院,江苏 徐州 221116

中国矿业大学煤炭精细勘探与智能开发全国重点实验室,江苏 徐州 221116

冲击地压 全时空预测 微震 时空特征指标 深度循环神经网络

国家重点研发计划项目国家自然科学基金项目江苏省自然科学基金项目江苏省创新支撑计划国际科技合作/港澳台科技合作——重点国别产业技术研发合作项目

2022YFC300460352274098BK20221109BZ2023050

2024

采矿与安全工程学报
中国矿业大学 中国煤炭工业劳动保护科学技术学会

采矿与安全工程学报

CSTPCD北大核心
影响因子:2.054
ISSN:1673-3363
年,卷(期):2024.41(3)