首页|专利形成全周期视角下的高价值专利识别体系研究

专利形成全周期视角下的高价值专利识别体系研究

扫码查看
随着中国经济转型升级步伐的加快,推进全国各地知识产权建设已成为创新驱动发展战略的重要议题.虽然我国已成为知识产权大国,但却非知识产权强国,因此构建完善的高价值专利识别方法将有助于专利价值精准分类,从而更有效地完善专利布局、提升研发效益、制定知识产权战略等.选取珠海市高新技术上市企业发明专利数据,提出以专利形成的全周期过程构建高价值专利识别指标,即高水平技术研发类指标、高质量申请确权类指标、高回报转化运用类指标,基于支持向量机、神经网络、自适应增强这三类机器学习法搭建高价值专利识别模型,并进行实证分析.通过完善高价值专利识别体系,助力企业和决策部门高价值专利识别工作的开展.
Research on the High Value Patent Identification System from the Perspective of the Full Cycle of Patent Formation
With the acceleration of China's economic transformation and upgrading,promoting intellectual property construction across the country has become an important issue in the innovation driven development strategy.Although China has become a major intellectual property country,it is not a strong intellectual property country.Therefore,building a comprehensive method for identifying high-value patents will help to accurately classify patent values,thereby more effectively improving patent layout,enhancing research and development efficiency,and formulating intellectual property strategies.This study selects the invention patent data of high-tech enterprises in Zhuhai City and proposes to construct high-value patent recognition indicators based on the full cycle process of patent formation,namely high-level technology research and development indicators,high-quality application confirmation indicators,and high return conversion application indicators.Based on three types of machine learning methods,namely support vector machine,neural network,and adaptive enhancement,a high-value patent recognition model is constructed and empirical analysis is conducted.This study aims to improve the high-value patent identification system and assist enterprises and decision-making departments in carrying out high-value patent identification work.

high-value patentsmachine learningsupport vector machineneural networkadaptive boosting

夏芸、魏田苡薇、洪楷宣、马硕

展开 >

暨南大学 国际商学院,广东 珠海 519070

高价值专利 机器学习 支持向量机 神经网络 自适应增强

2024

科学与管理
山东省科学院

科学与管理

CHSSCD
影响因子:0.38
ISSN:1003-8256
年,卷(期):2024.44(4)