首页|基于自步迁移学习的部分标签学习算法研究

基于自步迁移学习的部分标签学习算法研究

扫码查看
在部分标签学习中,每个训练样本对应一组候选标签,只有一个标签是真实标签.几乎所有现有的部分标签学习算法都试图通过不加区别地处理所有标签来消除候选标签集的模糊性.然而,这种方法在训练过程中缺乏对标签和实例之间复杂性的考虑.为了解决这种限制,本文引入了自步学习和迁移学习来解决部分标签学习问题,通过构建更具稳定性和分类性能的分类器,用新颖的方式解决了部分标签问题.
Research on Partial Label Learning Algorithm Based on Self-pacedandTransfer Learning
In partial label learning,each training sample corresponds to a set of candidate labels,and only one label is a real label.Almost all existing partial label learning algorithms attempt to eliminate the ambiguity of the candidate label set by processing all labels indiscriminately.However,this approach lacks consideration of the complexity between labels and instances during training.In order to solve this limitation,this paper introduces self-paced learning and transfer learning to solve the partial label learning problem,and constructs a classifier with more stability and classification performance to solve the partial label problem in a novel way.

partial label learningself-paced learningtransfer learningalgorithm research

郑志羽

展开 >

广东工业大学 广东 广州 510006

部分标签学习 自步学习迁移学习 算法研究

2024

科学与信息化

科学与信息化

ISSN:
年,卷(期):2024.(24)