首页|基于特征子空间学习的社会安全事件检测

基于特征子空间学习的社会安全事件检测

扫码查看
利用网络大数据对社会安全事件进行检测,针对现有方法存在的事件特征子空间对干扰特征的鲁棒性差以及子空间变化追踪精度低的问题,提出基于特征子空间学习的事件检测方法.首先进行初始化事件聚类簇的检测,抽取关键特征语义网络结构并进行样本聚类,利用鲁棒主成分分析估计得到事件向量子空间,设计事件子空间在线更新机制,追踪事件相关网络文本随着时间的推进发生的语义漂移.经过实验验证,本文所提方法可以有效检测社会安全事件,实现事件簇低维特征子空间估计,并且可以有效追踪事件特征的发展情况.
Social Security Event Detection Based on Characteristic Subspace Learning
This paper uses network big data to detect social security events,and proposes an event detection method based on characteristic subspace learning to solve the problems of the existing methods,such as poor robustness of event characteristic subspace for interference characteristics and low subspace change tracking accuracy.Firstly,the detection of the initialized event cluster is carried out,the semantic network structure of key characteristics is extracted and the sample clustering is carried out,the robust principal component analysis is used to estimate the event vector subspace,and the online update mechanism of the event subspace is designed to track the semantic drift of the event-related network text with the advancement of time.Experimental verification shows that the proposed method can effectively detect social security events,realize the subspace estimation of low-dimensional characteristics of event clusters,and effectively track the development of event characteristics.

event detectionsubspace learningsocial security event

石珺、高振远

展开 >

中电网络空间研究院有限公司 北京 100085

事件检测 子空间学习 社会安全事件

2024

科学与信息化

科学与信息化

ISSN:
年,卷(期):2024.(24)