首页|基于HGWO-SVR模型的竖向受荷斜坡桩基沉降预测

基于HGWO-SVR模型的竖向受荷斜坡桩基沉降预测

扫码查看
采用灰色关联分析深入研究了竖向荷载作用下斜坡桩基沉降的关键因素,各因素影响程度由大到小排序为:弹性模量>临坡距>斜坡坡度>内摩擦角>黏聚力>土体密度>土体泊松比>桩长>桩径.为优化支持向量回归(SVR)模型参数,引入差分进化,建立混合灰狼算法(HGWO),提出了一种新的HGWO-SVR模型.该模型与GWO-SVR和GS-SVR模型相比,表现出更显著的预测优势,整体预测精度高,误差较小.基于HGWO-SVR模型构建了斜坡桩基沉降的预测模型,并将其预测结果与已有沉降计算公式计算结果进行对比,结果表明,HGWO-SVR模型预测结果与公式计算结果最大误差为 6.55%,验证了该模型在斜坡桩基沉降预测方面的可行性.
Settlement Prediction for Pile Foundation of Vertically Loaded Slope Based on HGWO-SVR Model
The key factors of pile foundation settlement were explored for the slope under vertical load by using grey relational analysis,and it is found that each factor is in the following descending order by its influence:elastic modulus>slope distance>slope gradient>internal friction angle>cohesion>soil density>poisson′s ratio of soil>pile length>pile diameter.In order to optimize the parameters of support vector regression(SVR)model,a novel HGWO-SVR model was proposed by integrating the differential evolution-enhanced gray wolf algorithm(HGWO).Compared with GWO-SVR and GS-SVR models,this model presents obvious advantage in prediction,with high accuracy and minor error.A settlement prediction model for pile foundation of slope was constructed based on HGWO-SVR model,and the prediction results were compared with those values calculated with existing settlement formulas.The results show that the maximum percentage error between the prediction value of HGWO-SVR model and the calculated value is 6.55%,thus verifying that this model is feasible in settlement prediction for pile foundation of slope.

pile foundation of slopesettlement predictiongrey relational analysis(GRA)improved gray wolf algorithm

蒋冲、施泽雄

展开 >

水能资源利用关键技术湖南省重点实验室,湖南 长沙 410014

中南大学 资源与安全工程学院,湖南 长沙 410083

斜坡桩基 沉降预测 灰色关联分析 改进灰狼算法

水能资源利用关键技术湖南省重点实验室开放研究项目

PKLHD202103

2024

矿冶工程
长沙矿冶研究院有限责任公司 中国金属学会

矿冶工程

CSTPCD北大核心
影响因子:1.137
ISSN:0253-6099
年,卷(期):2024.44(2)
  • 15