首页|原子层沉积Al2O3对尖晶石LiNi0.5Mn1.5O4正极材料的影响机理

原子层沉积Al2O3对尖晶石LiNi0.5Mn1.5O4正极材料的影响机理

扫码查看
为提升尖晶石相LiNi0.5Mn1.5O4正极材料在深度荷电状态下的界面稳定性,采用原子层沉积法在单晶LiNi0.5Mn1.5O4正极材料表面可控沉积了纳米级Al2O3层.改性后的LiNi0.5Mn1.5O4正极材料表现出优异的长循环耐腐蚀性能(1C电流密度下循环500次的容量保持率高达94.7%).进一步的表界面解析结果表明:原子层沉积技术构建的纳米级Al2O3包覆层能够明显抑制材料本体与电解液的腐蚀反应,降低过渡金属离子的不可逆溶解与析出;另外,基于HF表面刻蚀产生的AlF3具有增强的耐刻蚀性能,可显著提升LiNi0.5Mn1.5O4正极材料在长循环及高电压下的服役性能.
Mechanism for Influence of Atomic Layer Deposition of Al2O3 on Spinel LiNi0.5Mn1.5O4 Cathode Material
To improve the interfacial stability of spinel phase LiNi05Mn15O4 cathode material in deeply charged state,a nanoscale Al2O3 film was deposited on the surface of single-crystal LiNi0.5Mn1.5O4 by atomic layer deposition in a controlled manner.The modified cathode material exhibits excellent long-cycle performance and corrosion resistance(with capacity retention rate up to 94.7%after 500 cycles at 1C).The surface and interface analysis shows that the nanoscale Al2O3 coating deposited by atomic layer deposition technology can significantly inhibit the corrosion reaction between material and electrolyte,and also constrain the irreversible dissolution and precipitation of transition metal ions.In addition,AlF3 produced by HF surface etching can enhance corrosion resistance of LiNi0.5Mn1.5O4 cathode material,which can thus improve its long-cycle performance and the service performance at high voltage.

lithium-ion batteryLiNi0.5Mn1.5O4cathode materialatomic layer depositionAl2O3surface modification

李倩、赵妍、崔雅茹、王硕然、黄娜、李常林、王文培、马红周、杜金晶、何喜红、翁雅青

展开 >

西安建筑科技大学冶金工程学院,陕西西安 710055

江西省科学院应用化学研究所,江西南昌 330012

锂离子电池 LiNi0.5Mn1.5O4 正极材料 原子层沉积 Al2O3 表面改性

国家重点研发计划陕西省自然科学基金陕西省自然科学基金陕西省重点实验室项目陕西省区域创新能力引导计划

2023YFC39059042020JQ-6792019JLM-3620JS0642022QFY10-05

2024

矿冶工程
长沙矿冶研究院有限责任公司 中国金属学会

矿冶工程

CSTPCD北大核心
影响因子:1.137
ISSN:0253-6099
年,卷(期):2024.44(4)