首页|基于改进U-Net的干式磁选矿带图像分割

基于改进U-Net的干式磁选矿带图像分割

扫码查看
为解决干式磁选过程中矿带不确定性问题,采用机器视觉技术,提出一种基于改进U-Net模型的图像分割方法.该模型利用CBAM注意力模块,提高网络对目标区域的识别和关注能力,有助于实现复杂背景下目标物体的图像分割;采用深度可分离卷积,降低计算复杂度的同时兼顾精度,为获取分辨率较高的矿带图像提供有力支持,从而适应磁选场景,改善网络性能.该模型分割精度为 92.28%,轮廓提取完整性和去噪能力优于经典U-Net、DeepLabV3+和PSPNet模型.
Image Segmentation Based on Improved U-Net Model for Beneficiation Product Zone in Dry Magnetic Separation
Aiming at uncertainty of beneficiation product zone in dry magnetic separation process,an image segmentation method based on an improved U-Net model was proposed by employing machine vision.In this improved model,convolutional block attention module(CBAM)is utilized to enhance the recognition and attention of the network for target areas,which is beneficial to the segmentation of target objects under complex backgrounds;depth-wise separable convolution is adopted to reduce computational complexity while maintaining accuracy,providing strong support for obtaining high-resolution images of beneficiation product zone.Thus,this model can be applied in magnetic separation and also improve network performance.It is found that this improved model can bring segmentation accuracy up to 92.28%,and also is superior to classic U-Net,DeepLabV3+and PSPNet models in terms of contour extraction completeness and denoising capabilities.

dry magnetic separationimage recognitionimage segmentationmachine visionU-Netconvolutional block attention module(CBAM)depth-wise separable convolution

刘石梅、肖晶峰、刘洋、黄勇、肖盛旺、张胜广

展开 >

长沙矿冶研究院有限责任公司,湖南 长沙 410012

干式磁选 图像识别 图像分割 机器视觉 U-Net CBAM注意力机制 深度可分离卷积

2024

矿冶工程
长沙矿冶研究院有限责任公司 中国金属学会

矿冶工程

CSTPCD北大核心
影响因子:1.137
ISSN:0253-6099
年,卷(期):2024.44(6)