首页|基于随机森林与支持向量机的热轧带钢凸度加权预测模型研究

基于随机森林与支持向量机的热轧带钢凸度加权预测模型研究

扫码查看
针对传统带钢凸度预测方法预测精度低、速度慢的问题,建立了基于随机森林和支持向量机的热轧带钢凸度加权预测模型.采用改进长鼻浣熊算法分别对随机森林、支持向量机和随机森林与支持向量机加权预测模型的参数进行优化,提高凸度预测精度.以某公司热轧 1580 mm生产线实测数据进行凸度预测仿真研究,随机森林与支持向量机加权预测模型的均方根误差为2.23 μm,与随机森林模型、支持向量机模型预测精度进行比较,加权预测模型的精度分别提高了 7.08%、2.62%.
Weighted Prediction Model of Hot Rolled Strip Crown Based on Random Forest and Support Vector Machine
In view of low prediction accuracy and slow speed of traditional prediction methods for strip crown,a weighted prediction model based on random forest(RF)and support vector machine(SVM)was established.The parameters of models based on RF,SVM,and a combination of RF and SVM were optimized respectively by adopting the improved coati optimization algorithm(ICOA),so as to improve crown prediction accuracy.A 1580 mm production line of a hot-rolling mill in one company was taken in a simulation research on crown prediction based on its actual measurement.The root mean square error of the weighted prediction model based on RF and SVM is 2.23 μm.It is found that this weighted prediction model has its prediction accuracy increased by 7.08%and 2.62%respectively,compared with the models based on RF and SVM respectively.

crown predictionhot rolling stripsupport vector machine(SVM)coati optimization algorithm(COA)crownrandom forest(RF)

周亚罗、李子轩、张少川、刘文广、张瑞成

展开 >

华北理工大学 电气工程学院,河北 唐山 063210

首钢京唐钢铁联合有限责任公司,河北 唐山 063200

凸度预测 热轧带钢 支持向量机 长鼻浣熊算法 凸度 随机森林

2024

矿冶工程
长沙矿冶研究院有限责任公司 中国金属学会

矿冶工程

CSTPCD北大核心
影响因子:1.137
ISSN:0253-6099
年,卷(期):2024.44(6)