首页|基于SET方法的爆破振动信号时频特征分析

基于SET方法的爆破振动信号时频特征分析

扫码查看
传统的信号分析方法在爆破振动信号的时频特征提取中存在能量发散、时频分析结果精度差等问题.对此,采用一种新的信号分析方法——同步提取变换(Synchroextracting Transform,SET),同时结合经验模态分解(Empirical Mode Decomposition,EMD)和多尺度小波分解(Wavelet Decomposition,WD)对爆破振动信号进行滤波降噪,以获得更加精确的时频分析结果.使用该方法对某矿山生产爆破振动信号进行分析,结果显示,经验模态分解(EMD)和多尺度小波分解(WD)可以有效滤除原始信号中的干扰分量,降噪后的纯净信号与原始信号的相关性系数达到 0.959 8.同时,对纯净信号分别进行短时傅里叶变换(Short-Time Fourier Transform,STFT)与同步提取变换(SET),通过比较两者的时频分析结果和信息熵,表明同步提取变换(SET)在爆破振动信号时频分析中有着更高的时频分析精度.
Time-frequency Characteristic Analysis of Blasting Vibration Signal Based on Synchroextracting Transform Method
About the extraction of time-frequency characteristics of blasting vibration signals,the traditional signal analysis method has problems,such as energy divergence and poor accuracy of time-frequency analysis.Therefore,this paper introduces a new signal analysis method,synchroextracting transformation(SET),and combines empirical mode decomposition(EMD)and multi-scale wavelet decomposition(WD)to filter and reduce the blast vibration signal to obtain more accurate time-frequency analysis results.This method is used to analyze the blasting vibration signal produced by a mine,and the results show that empirical mode decomposition(EMD)and multi-scale wavelet decomposition(WD)can effectively filter out the interference component in the original signal,and the correlation coefficient between the pure signal after noise reduction and the original signal reached 0.959 8.At the same time,the short-time Fourier transform(STFT)and the synchroextracting transformation(SET)are performed on the pure signals,which verify that the synchroextracting transformation(SET)has higher time-frequency analysis accuracy in the time-frequency analysis of the blasting vibration signal by comparing the time-frequency analysis results and information entropy of the two.

blasting vibration signalempirical mode decompositionwavelet decompositionsynchroextracting transforminformation entropy

司凯凯、张光权、杨如孜、王梦佳

展开 >

武汉科技大学 资源与环境工程学院,湖北 武汉 430000

湖北省工业安全工程技术研究中心,湖北 武汉 430000

爆破振动信号 经验模态分解 小波分解 同步提取变换 信息熵

校企合作项目

2021H20197

2024

矿业工程研究
湖南科技大学

矿业工程研究

影响因子:0.409
ISSN:1674-5876
年,卷(期):2024.39(2)