首页|基于改进YOLOv3的露天矿卡车目标检测方法

基于改进YOLOv3的露天矿卡车目标检测方法

扫码查看
YOLOv3作为 目标检测算法中的优秀模型,在许多领域都得到了广泛应用.针对目前露天矿作业现场环境复杂和矿用卡车 目标尺度变化大的问题,提出 了一种改进的YOLOv3矿用卡车目标检测算法.在YOLOv3的Darknet-53骨干网络中加入第4个检测尺度,并将浅层网络上采样和深层网络进行特征融合,提高小 目标检测效果;通过K-means算法对先验框尺寸进行改进,获得适合矿用卡车的最优先验框;引入CIoU回归优化损失函数,提高检测精度.试验结果表明,改进后的YOLOv3矿用卡车检测模型的平均检测精度达到96.2%,相比原版YOLOv3模型提高了2.4%,且目标检测速度能够满足实时检测的需求.
Target Detection Method of Truck in Open-Pit Mine Based on Improved YOLOv3 Algorithm
As an excellent model in object detection algorithms,YOLOv3 has been widely used in many fields.An improved Yolov3 target detection algorithm for mining truck was proposed to solve the problems of complex working environment and large variety of mining truck target scale.The fourth detection scale was added to the Darknet-53 backbone network of YOLOv3,and the feature fusion was performed between the shallow network and the deep network to improve the small target detection effect.K-means algorithm was used to improve the size of the prior bounding box and obtain the most suitable prior bounding box for mining trucks.CIoU regression optimization loss function was used to improve the detection precision.The experimental results show that in the detection of mining trucks using the improved YOLOv3 model,the average detection precision reaches 96.2%,which is 2.6%higher than the original YOLOv3 model,and the target detection speed can meet the needs of real-time detection.

Open-pit mineMining truckTarget DetectionDeep LearningYOLOv3

王仁炎、陆占国、胡振涛、邱景平、孙效玉

展开 >

东北大学资源与土木工程学院,辽宁沈阳 110004

鞍钢矿业集团齐大山铁矿,辽宁鞍山市 114000

露天矿 矿用卡车 目标检测 深度学习 YOLOv3

国家重点研发计划项目

2016YFC0801608

2024

矿业研究与开发
长沙矿山研究院有限责任公司 中国有色金属学会

矿业研究与开发

CSTPCD北大核心
影响因子:0.763
ISSN:1005-2763
年,卷(期):2024.44(2)
  • 15