首页|基于VMD-BiLSTM组合模型的矿井涌水量时间序列预测方法研究

基于VMD-BiLSTM组合模型的矿井涌水量时间序列预测方法研究

扫码查看
矿井涌水量的精准预测对确保煤矿安全生产和保护地下水环境具有重要作用.为提高矿井涌水量时间序列预测精度,构建了一种基于变分模态分解(VMD)与引入贝叶斯算法优化双向长短期记忆网络(BiLSTM)的矿井涌水量组合预测模型.首先,利用VMD将矿井涌水量时序数据分解为多个子序列,然后将分解所得各子序列分别输入到BiLSTM模型中,引入贝叶斯算法优化各模型的超参数,最后,将各子序列的预测结果进行叠加求和得到最终预测值,并与其他模型的预测结果进行对比分析.结果表明,本模型在单步预测中优势较为明显,在多步预测中的表现也相当不俗,预测精度可以达到生产需求,验证了该模型在矿井涌水量时序预测方面的有效性和适用性.
Research on Time Series Prediction Method of Mine Water Inflow Based on VMD-BiLSTM Combined Model
The accurate prediction of mine water inflow plays an important role in ensuring safe production and protecting the groundwater environment in coal mines.In order to improve the accuracy of time series prediction of mine water inflow,a combined prediction model of mine water inflow based on variational modal decomposition(VMD)and the optimization of bidirectional long short-term memory network(BiLSTM)by Bayesian algorithm was constructed.Firstly,VMD was used to decompose the time series data of mine water inflow into multiple subseries,and then the subseries obtained by decomposition were input into the BiLSTM model.At the same time,Bayesian algorithm was introduced to optimize the hyperparameters of each model.Finally,the prediction results of each subseries were superimposed and summed to obtain the final predicted value,and compared with the prediction results of other models.The results show that the model has obvious advantages in single-step prediction,and its performance in multi-step prediction is also quite good.The prediction accuracy can meet the production demand,which verifies the validity and applicability of the model in the time series prediction of mine water inflow.

Variational modal decompositionBidirectional long short-term memory networkBayesian algorithmPrediction of mine water inflowTime series

王飞、荣统瑞、侯恩科、樊志刚、谭二民

展开 >

陕西彬长文家坡矿业有限公司,陕西咸阳市 713500

西安科技大学地质与环境学院,陕西西安 710054

陕西省煤炭绿色开发地质保障重点实验室,陕西西安 710054

变分模态分解 双向长短期记忆网络 贝叶斯算法 矿井涌水量预测 时间序列

国家自然科学基金陕西省中央引导地方科技发展专项

421771742020ZY-JC-03

2024

矿业研究与开发
长沙矿山研究院有限责任公司 中国有色金属学会

矿业研究与开发

CSTPCD北大核心
影响因子:0.763
ISSN:1005-2763
年,卷(期):2024.44(3)
  • 20