首页|基于UWB与指纹定位的矿井移动目标TOA定位算法

基于UWB与指纹定位的矿井移动目标TOA定位算法

扫码查看
针对煤矿井下人员、设备等目标的定位易受非视距传播时延影响,导致定位精度低、实时性不高等问题,提出了一种基于超宽带(UWB)与指纹定位的矿井移动目标到达时间(TOA)定位方法.首先,采用双程双向测距(DS-TWR)方式测量定位基站与待测目标之间的距离,构建Chan算法估算待测目标的坐标;其次,利用Taylor公式对Chan算法的定位结果进行迭代更新,抑制矿井巷道中非视距(NLOS)延时误差;最后,依次采集特定点距离指纹构建指纹库,引入改进的算术优化算法优化最小二乘支持向量机(AOA-LSSVM)模型估计待测目标位置的横、纵坐标误差,结合Chan-Taylor算法定位结果进行误差补偿,得到待测目标的最优位置估计.试验结果表明:所提出的算法在视距(LOS)环境下的静态试验和动态试验中定位精度相较于Chan-Taylor算法分别提升了 18.63%、63.79%;在NLOS环境下的静态试验和动态试验中定位精度相较于Chan-Taylor算法分别提升了82.40%、56.78%,可满足目标在矿井下高精度的定位要求.
TOA Localization Algorithm of Underground Mine Moving Target Based on UWB and Fingerprint Localization
Aiming at the problem that the localization of targets such as personnel and equipment in underground mine is easily affected by non-line-of-sight propagation delay,resulting in low localization accuracy and poor real-time performance,a time of arrival(TOA)localization method for underground mine moving targets based on ultra-wide band(UWB)and fingerprint localization was proposed.Firstly,the distance between the localization base station and the target to be measured was measured by double-sided two-way ranging(DS-TWR),and the Chan algorithm was constructed to estimate the coordinates of the target to be measured.Secondly,the Taylor formula was used to iteratively update the localization results of the Chan algorithm to suppress the non-line-of-sight(NLOS)delay error in the mine roadway.Finally,the fingerprint database was constructed by collecting the distance fingerprints of specific points in turn.The horizontal and vertical coordinate errors of the target position to be measured were estimated by the improved arithmetic optimization algorithm to optimize the least squares support vector machine(AOA-LSSVM)model.Combined with the localization results of Chan-Taylor algorithm,the error compensation was carried out to obtain the optimal position estimation of the target to be measured.The experimental results show that the localization accuracy of the proposed algorithm is improved by 18.63%and 63.79%respectively compared with the Chan-Taylor algorithm in the static and dynamic experiments in the line-of-sight(LOS)environment.The localization accuracy of the algorithm is improved by 82.40%and 56.78%respectively compared with the Chan-Taylor algorithm in the static and dynamic experiments in NLOS environment,which can meet the high-precision localization requirements of the target in underground mine.

Underground mine moving targetUltra-wide bandFingerprint localizationTime arrival localization algorithmChan-Taylor algorithm

王智勇、张宏伟、卜旭辉

展开 >

河南理工大学电气工程与自动化学院,河南焦作市 454003

河南省煤矿装备智能检测与控制重点实验室,河南焦作市 454003

矿井移动目标 超宽带 指纹定位 时间到达定位算法 Chan-Taylor 算法

国家自然科学基金河南省高等学校科技创新团队支持计划

U180414720IRTSTHN019

2024

矿业研究与开发
长沙矿山研究院有限责任公司 中国有色金属学会

矿业研究与开发

CSTPCD北大核心
影响因子:0.763
ISSN:1005-2763
年,卷(期):2024.44(3)
  • 21