首页|基于改进YOLOv5的煤矿井下暗环境矿工安全穿戴智能识别

基于改进YOLOv5的煤矿井下暗环境矿工安全穿戴智能识别

扫码查看
煤矿井下矿工安全智能识别是防止矿工受到意外伤害的重要保护措施之一.为了提高煤矿井下光线不足等暗环境下的识别准确率,提出一种基于改进YOLOv5的目标检测算法对矿工安全穿戴进行智能识别.首先,实地采集数据构建安全穿戴数据集,将其输入到弱光增强网络Zero-DCE中,提升模型的泛化能力;其次,提出C-ASPP模块,通过对ASPP改进并加入注意力机制,将其加入主干网络之中,使模型更加高效关注安全穿戴区域的特征;然后,在主干融入Transformer算法,增强模型对不同尺度目标的动态调整能力;最后,在特征融合阶段,使用双向特征融合金字塔模型,提高模型的特征提取能力和检测性能.试验结果表明:改进后的YOLOv5算法的平均检测精度提升至90.2%,较原算法提高了 3个百分点,检测速度为81.2帧/s,相较于其他算法有着较高的准确度和速度,可满足井下工作区域内矿工安全穿戴识别要求.
Research on Intelligent Recognition of Safety Wearing of Miners in Dark Enviroment of Coal Mine Based on Improved YOLOv5
Intelligent identification of miners'safety in coal mines is one of the important protection measures to prevent miners from accidental injury.In order to improve the recognition accuracy in the dark environment such as insufficient light in the coal mine,a target detection algorithm based on improved YOLOv5 was proposed to intelligently identify the safe wearing of miners.Firstly,the data is collected in the field to construct a secure wearable data set,which is input into the weak light enhanced network Zero-DCE to improve the generalization ability of the model.Secondly,the C-ASPP module is proposed.By improving the ASPP and adding the attention mechanism,it is added to the backbone network to make the model pay more attention to the characteristics of the safe wearing area.Then,the Transformer algorithm is integrated into the backbone to enhance the dynamic adjustment ability of the model to different scale targets.Finally,in the feature fusion stage,the bidirectional feature fusion pyramid model is used to improve the feature extraction ability and detection performance of the model.The results show that the average detection accuracy of the improved YOLOv5 algorithm is increased to 90.2%,which is 3 percentage points higher than that of the original algorithm,and the detection speed is 81.2 frames/s.Compared with other algorithms,it has higher accuracy and speed,which can meet the requirements of miners'safe wearing recognition in the underground working area.

Safety intelligent identificationImproved YOLOv5 algorithmUnderground dark environmentSafe wearing of miners

顾清华、何鑫鑫、王倩、李学现、郭小川

展开 >

西安建筑科技大学资源工程学院,陕西西安 710055

西安建筑科技大学西安市智慧工业感知计算与决策重点实验室,陕西西安 710055

陕煤集团神木张家峁矿业公司,陕西榆林市 719000

安全智能识别 改进YOLOv5算法 井下暗环境 矿工安全穿戴

国家自然科学基金陕西省杰出青年基金

520742502020JC-44

2024

矿业研究与开发
长沙矿山研究院有限责任公司 中国有色金属学会

矿业研究与开发

CSTPCD北大核心
影响因子:0.763
ISSN:1005-2763
年,卷(期):2024.44(3)
  • 17