首页|考虑卡车尾气排放因素的露天矿粉尘质量浓度预测

考虑卡车尾气排放因素的露天矿粉尘质量浓度预测

扫码查看
露天矿粉尘污染会对矿区生态环境和员工身体健康造成严重危害,准确预测其质量浓度对大气污染防治具有重要的指导作用.研究提出一种基于灰狼算法优化随机森林(GWO-RF)的粉尘质量浓度预测模型,并在该模型的特征变量中加入矿区卡车尾气排放因素,考虑计算卡车尾气中的颗粒污染物的含量.研究结果表明,采用移动平均法对粉尘质量浓度进行降噪处理,有效改善了预测效果;与其他传统模型对比,GWO-RF模型的拟合能力和预测的准确率最高.
Prediction of Dust Mass Concentration in Open-Pit Mines Considering Truck Exhaust Emission Factors
Dust pollution in open-pit mines has caused serious harm to the ecological environment of mining areas and the health of employees.Accurately predicting its mass concentration plays an important guiding role in the prevention and control of air pollution.A dust mass concentration prediction model was proposed based on grey wolf optimization algorithm optimized random forest(GWO-RF).This model incorporates mining truck exhaust emission factors into the characteristic variables,with consideration of calculating the content of particulate pollutants in truck exhaust.The research results indicate that using the moving average method for noise reduction of dust mass concentration effectively improves the prediction effect.Compared with other traditional models,the GWO-RF model has the highest fitting ability and prediction accuracy.

Open-pit coal mineDust mass concentration predictionExhaust pollutionRandom forestGrey wolf optimization algorithm

顾清华、王晨曦、王倩、刘敏

展开 >

西安建筑科技大学资源工程学院,陕西西安 710055

西安市智慧工业感知计算与决策重点实验室,陕西西安 710055

西安建筑科技大学管理学院,陕西西安 710055

露天煤矿 粉尘质量浓度预测 尾气污染 随机森林 灰狼优化算法

国家自然科学基金项目国家自然科学基金项目陕西省杰出青年基金项目

51774228520742052020JC-44

2024

矿业研究与开发
长沙矿山研究院有限责任公司 中国有色金属学会

矿业研究与开发

CSTPCD北大核心
影响因子:0.763
ISSN:1005-2763
年,卷(期):2024.44(4)
  • 21