首页|基于TPE-BP神经网络的爆破振速预测模型研究

基于TPE-BP神经网络的爆破振速预测模型研究

扫码查看
爆破振动速度是爆破设计需要考虑的的重要因素之一,然而在爆破振动速度预测中,BP神经网络超参数的确定依赖经验公式且具有主观性.为克服这种局限性,并提高振动速度预测精度,采用超参数优化算法TPE对BP神经网络进行超参数优选.以最大段起爆炸药量、炮孔深度、水平距离、垂直距离和炸药单耗参数作为输入量,建立了隐含层数量神经元数量为31个的BP神经网络(TPE-BP)预测模型,该模型的爆破振动速度平均预测误差为2.35%,最大误差为6.29%,与基于经验公式确定超参数的BP神经网络模型和传统的BP神经网络模型相比较,平均预测误差分别降低了23.26个百分点和4.24个百分点,说明参数网络优化后TPE-BP预测模型能更好地拟合振动数据,其预测结果更接近真实值,可为爆破参数设计提供参考依据,从而有效地控制爆破振动.
Study on Prediction of Blasting Vibration Velocity Based on TPE-BP Neural Network
The blasting vibration velocity is one of the important factors that need to be considered in blasting design.However,in predicting blasting vibration velocity,the determination of hyperparameters in BP neural networks depends on empirical formulas and has subjectivity.To overcome this limitation and improve the accuracy of vibration velocity prediction,the hyperparameter optimization algorithm of TPE was used to optimize the hyperparameters of the BP neural network.A BP neural network(TPE-BP)prediction model with 31 hidden layers neurons was established using the maximum explosive charge,borehole depth,horizontal distance,vertical distance,and explosive consumption parameters as input.The average prediction error of the blasting vibration velocity of the model was 2.35%,with a maximum error of 6.29%.Compared with the BP neural network model based on empirical formulas to determine hyperparameters and the traditional BP neural network model,the average prediction error was reduced by 23.26 percentage points and 4.24 percentage points,respectively.The results indicate that the optimized parameters network of the TPE-BP prediction model can better fit the vibration data,and its prediction results are closer to the true values.The study can provide a reference basis for blasting parameter design,thereby further effectively control the blasting vibration.

Blasting vibrationPrediction of vibration velocityBP neural networkTPE algorithmHyperparameter optimization

崔红艳、张子禄、胡静、张荣国、王桐、王勇

展开 >

太原科技大学计算机科学与技术学院,山西太原 030024

山西焦煤民爆集团矿山民爆工程分公司,山西太原 030300

爆破振动 振动速度预测 BP神经网络 TPE算法 超参数优化

山西省自然科学基金面上项目山西省自然科学基金面上项目太原科技大学企业委托横向项目太原科技大学博士科研启动基金太原科技大学大学生创新创业训练计划

202203021211189202203021211206202103520202057XJ2023110

2024

矿业研究与开发
长沙矿山研究院有限责任公司 中国有色金属学会

矿业研究与开发

CSTPCD北大核心
影响因子:0.763
ISSN:1005-2763
年,卷(期):2024.44(5)