首页|基于改进极限学习机的煤与瓦斯突出预测研究

基于改进极限学习机的煤与瓦斯突出预测研究

Research on Coal and Gas Outburst Prediction Based on Improved Extreme Learning Machine

扫码查看
为提高煤与瓦斯突出预测的准确率和效率,提出了一种基于数据预处理的多策略改进烟花算法(IFWA)优化极限学习机(ELM)的煤与瓦斯突出预测模型.首先,针对于非线性多维特征数据,使用灰色关联度分析(GRA)进行特征选取,利用主成分分析(PCA)进行特征约简,将数据预处理后的数据指标作为模型的输入;其次,引入引力搜索算子和混合变异策略改进烟花算法(FWA)易陷入局部最优的问题;最后,利用IFWA对ELM的输入层到隐含层的权重和偏差进行优化,构建最优的煤与瓦斯突出风险预测模型.结果表明,IFWA-ELM 模型的RMSE和R2可达0.074,0.968,与 ELM、GA-ELM、PSO-ELM 和 FWA-ELM 模型相比均有所提升,IFWA-ELM模型对煤与瓦斯突出危险等级预测的准确率可达100%,具有更好的收敛速度和预测精度.研究成果可为煤矿瓦斯突出多数据融合预测提供可靠的理论依据.
In order to improve the accuracy and efficiency of coal and gas outburst prediction,a coal and gas outburst prediction model based on data preprocessing multi-strategy improved fireworks algorithm(IFWA)optimized extreme learning machine(ELM)was proposed.Firstly,for the nonlinear multi-dimensional feature data,the grey relational analysis(GRA)was used for feature selection,the principal component analysis(PCA)was used for feature reduction,and the data index after data preprocessing was used as the input of the model.Secondly,the gravitational search operator and hybrid mutation strategy were introduced to improve the problem that the fireworks algorithm(FWA)was easy to fall into local optimum.Finally,IFWA was used to optimize the weight and deviation from the input layer to the hidden layer of ELM,and the optimal coal and gas outburst risk prediction model was constructed.The results show that the RMSE and R2 of IFWA-ELM model can reach 0.074 and 0.968,which are improved compared with ELM,GA-ELM,PSO-ELM and FWA-ELM models.The accuracy of prediction of IFWA-ELM model on coal and gas outburst risk level can reach 100%,which has better convergence speed and prediction accuracy.The research results can provide a reliable theoretical basis for multi-data fusion prediction of coal mine gas outburst.

Coal and gas outburstFireworks algorithmExtreme learning machineData preprocessingRisk prediction model

乔威豪、安葳鹏、赵雪菡、吕常周

展开 >

河南理工大学计算机科学与技术学院,河南焦作市 454000

河南理工大学软件学院,河南焦作市 454000

煤与瓦斯突出 烟花算法 极限学习机 数据预处理 风险预测模型

国家自然科学基金河南省科技攻关计划重点项目

61872126192102210123

2024

矿业研究与开发
长沙矿山研究院有限责任公司 中国有色金属学会

矿业研究与开发

CSTPCD北大核心
影响因子:0.763
ISSN:1005-2763
年,卷(期):2024.44(5)