首页|基于轻量化PAM-M-YOLO模型的煤矸石图像检测

基于轻量化PAM-M-YOLO模型的煤矸石图像检测

Coal Gangue Image Detection Based on Light-Weighted PAM-M-YOLO Model

扫码查看
针对传统煤矸石检测算法中人为提取煤矸石图像特征过程复杂、检测精度低等问题,提出了 一种轻量化的PAM-M-YOLO 煤矸石检测模型.首先,使用MobileNetv3特征提取网络替换原模型主干网络,采用深度可分离卷积替换传统卷积进行煤矸石图像的特征提取;其次,设计PAM并联注意力模块提升目标检测网络层拼接后特征图通道和空间信息关注度;最后,基于CAM激活限制分支给模型添加先验信息,以降低模型在非关键特征上的局部坍塌.试验结果表明,轻量化PAM-M-YOLO煤矸石检测模型准确率、召回率、mAP 值分别为 98.7%、97.5%、98.8%,较原 M-YOLO模型分别提升了 3.6,2.3,2.0个百分点;参数量为3.8 MB,比YOLOv5模型降低了近1/2.热力图可视化效果表明,轻量化PAM-M-YOLO模型在检测过程中所关注的信息更集中于煤矸石区域,有效解决了模型在煤矸石区域的局部坍塌问题.
Aiming at the problems of complex process and low detection accuracy of artificially extracting coal gangue image features in traditional coal gangue detection algorithms,a light-weighted PAM-M-YOLO coal gangue detection model was proposed.Firstly,the MobileNetv3 feature extraction network was used to replace the original model backbone network,and the depth separable convolution was used to replace the traditional convolution to extract the features of coal gangue images.Secondly,PAM parallel attention module was designed to improve the attention of feature map channel and spatial information after the splicing of target detection network layer.Finally,a priori information is added to the model based on the CAM activation restriction branch to reduce the local collapse of the model on non-key features.The experimental results show that the accuracy,recall rate and mAP value of the light-weighted PAM-M-YOLO coal gangue detection model are 98.7%,97.5%and 98.8%,respectively,which are 3.6,2.3 and 2.0 percentage points higher than those of the original M-YOLO model.The number of parameters is 3.8 MB,which is nearly 1/2 lower than the YOLOv5 model.The visualization effect of the heat map shows that the information concerned by the light-weighted PAM-M-YOLO model in the detection process is more concentrated in the coal gangue area,which can effectively solve the local collapse problem of the model in the coal gangue area.

Coal gangue image detectionYOLOv5 modelLight-weighted PAM-M-YOLO modelDeep learningAttention mechanismLoss function

郭栋梁、张延军

展开 >

太原科技大学机械工程学院,山西太原 030024

煤矸石图像检测 YOLOv5模型 轻量化PAM-M-YOLO模型 深度学习 注意力机制 损失函数

2024

矿业研究与开发
长沙矿山研究院有限责任公司 中国有色金属学会

矿业研究与开发

CSTPCD北大核心
影响因子:0.763
ISSN:1005-2763
年,卷(期):2024.44(5)