首页|基于Informer神经网络的工作面矿压预测研究

基于Informer神经网络的工作面矿压预测研究

扫码查看
为了有效改善工作面矿压预测精度低、泛化能力不足的问题,基于Informer神经网络模型建立矿压时序预测模型,以液压支架采集到的历史矿压数据为输入,实现对未来一段时间的工作面矿压预测.所建立模型基于概率稀疏(ProbSpare)自注意力机制所提取到的矿压输入序列信息,可捕获输入序列的长期依赖关系,并对影响因素之间较为复杂的非线性关系进行建模,从而提高模型预测精度.采用成庄矿XV1307工作面矿压数据进行模型训练和测试,所得结果与粒子群优化BP神经网络(PSO-BP)和长短期记忆网络(LSTM)的预测结果进行对比.结果表明:3种模型对未来1~4 d的矿压预测中,Informer神经网络的均方根误差、平均绝对值误差以及决定系数均为最优,取得了较好的预测效果.
Research on Ming Pressure Prediction of Working Face Based on Informer Neural Network
In order to effectively improve the problems of low accuracy and insufficient generalization ability of mine pressure prediction in the working face,a time-series prediction model of the mine pressure was established based on the Informer neural network,and the historical mine pressure data collected by hydraulic supports was taken as input to realize the prediction of the mine pressure for a period of time in the future.The established model was based on the mine pressure input sequence information extracted by the ProbSpare self-attention mechanism,which can capture the long-term dependence of the input sequence,and model the complex nonlinear relationships among the influencing factors,thereby improving Informer model prediction accuracy.The mine pressure data of the XV1307 working face of Chengzhuang Mine was used for model training and testing,and the obtained prediction results were compared with those of particle swarm optimization BP neural network(PSO-BP)and Long Short Term Memory network(LSTM).The results show that,for the prediction of mine pressure in the next 1-4 days,the root mean square error,mean absolute error and determination coefficient of the Informer neural network are all the optimal,and a good prediction effect has been achieved.

Mine pressure predictionHydraulic supportSelf-attention mechanismDeep learningInformer neural network

何志铧、熊祖强

展开 >

河南理工大学能源科学与工程学院,河南焦作市 454003

煤炭安全生产河南省协同创新中心,河南焦作市 454003

矿压预测 液压支架 自注意力机制 深度学习 Informer神经网络

国家自然科学基金项目

51904093

2024

矿业研究与开发
长沙矿山研究院有限责任公司 中国有色金属学会

矿业研究与开发

CSTPCD北大核心
影响因子:0.763
ISSN:1005-2763
年,卷(期):2024.44(7)
  • 15