Algebraic state space approach to logical dynamic systems and its applications
The logical dynamic system in this paper stands for the systems where the state variables can take only finite values. Particularly, when the number is 2 it is a classical logic (or Boolean logic); k-valued logic, and general finitely valued (general) logic. In recent years, using semi-tensor product of matrices the algebraic state space approach to logical dynamic systems has been developed and widely appreciated. It has been used to many engineering problems and to theoretical researches. Parallel to the Kalman state space approach to continuous state space dynamics where the differential equations or difference equations are used to describe the dynamic systems, the algebraic state space approach may provide a convenient platform for analyzing and control design of logical systems. The purpose of this paper is two fold: First, we give a brief survey on this new approach; then we introduce its current research topics and main results. Finally many applications and predict the potential of its further applications are presented.
semi-tensor productlogical dynamic systemsalgebraic state space equationpure state and mixed statecontrol and game