首页|图像分类卷积神经网络的特征选择模型压缩方法

图像分类卷积神经网络的特征选择模型压缩方法

扫码查看
深度卷积神经网络(convolutional neural networks,CNN)作为特征提取器(feature extractor,CNN-FE)已被广泛应用于许多领域并获得显著成功.根据研究评测可知CNN-FE具有大量参数,这大大限制了CNN-FE在如智能手机这样的内存有限的设备上的应用.本文以AlexNet卷积神经网络特征提取器为研究对象,面向图像分类问题,在保持图像分类性能几乎不变的情况下减少CNN-FE模型参数量.通过对AlexNet各层参数分布的详细分析,作者发现其全连接层包含了大约99%的模型参数,在图像分类类别较少的情况,AlexNet提取的特征存在冗余.因此,将CNN-FE模型压缩问题转化为深度特征选择问题,联合考虑分类准确率和压缩率,本文提出了一种新的基于互信息量的特征选择方法,实现CNN-FE模型压缩.在公开场景分类数据库以及自建的无线胶囊内窥镜(wireless capsule endoscope,WCE)气泡图片数据库上进行图像分类实验.结果表明本文提出的CNN-FE模型压缩方法减少了约83%的AlexNet模型参数且其分类准确率几乎保持不变.
Convolutional neural networks model compression based on feature selection for image classification
Deep convolutional neural networks (CNN) feature extractor (CNN-FE) has been widely applied in many applications and achieved great success. However, evaluating shows that the CNN-FE holds abundant parameters which largely limits its applications on memory-limited platforms, such as smartphones. This study makes an effort to trim the well-known CNN-FEs, AlexNet, to reduce its parameters meanwhile the image classification performance almost remains unchanged. This task is considered as a CNN-FE model compression problem. Through carefully analyzing the parameter distribution of AlexNet, we find about 99%of parameters are in its fully connected layer but the deep features are redundant for image classification tasks with small number of categories. Moreover, we propose to convert the CNN-FE model compression problem into a feature selection problem. Specifically, a feature selection method, which is based on mutual information and a novel criterion related to the classification accuracy and the compression ratio, has been proposed. Image classification experiments on a public scene categories database and our self-built wireless capsule endoscope (WCE) bubble dataset show that our proposed CNN-FE model compression method reduces more than 83%size of the AlexNet while almost maintaining the classification accuracy.

convolutional neural networksimage classificationfeature extractorfeature selectionmodel compression

邹月娴、余嘉胜、陈泽晗、陈锦、王毅

展开 >

北京大学信息工程学院现代信号与数据处理实验室,广东深圳518055

卷积神经网络 图像分类 特征提取 特征选择 模型压缩

Supported by Shenzhen Science&Technology Fundamental Research Program

JCYJ20150430162332418

2017

控制理论与应用
华南理工大学 中国科学院数学与系统科学研究院

控制理论与应用

CSTPCDCSCD北大核心EI
影响因子:1.076
ISSN:1000-8152
年,卷(期):2017.34(6)
  • 6
  • 17