首页|考虑无线充电的无人机路径在线规划

考虑无线充电的无人机路径在线规划

扫码查看
近年来,无人机在物流、通信、军事任务、灾害救援等领域中展现出了巨大的应用潜力,然而无人机的续航能力是制约其使用的重大因素,在无线充电技术不断突破和发展的背景下,本文基于深度强化学习方法,提出了一种考虑无线充电的无人机路径在线优化方法,通过无线充电技术提高无人机的任务能力。首先,对无人机功耗模型和无线充电模型进行了构建,根据无人机的荷电状态约束,设计了一种基于动态上下文向量的深度神经网络模型,通过编码器和解码器的模型架构,实现无人机路径的直接构造,通过深度强化学习方法对模型进行离线训练,从而应用于考虑无线充电的无人机任务路径在线优化。文本通过与传统优化方法和深度强化学习方法进行实验对比,所提方法在CPU算力和GPU算力下分别实现了 4倍以及100倍以上求解速度的提升。
Online path planning for unmanned aerial vehicles considering wireless charging
Recently,unmanned aerial vehicles(UAVs)have shown great potentials in the fields of logistics,communica-tion,military mission,disaster rescue,etc.However,the poor endurance of UAVs is a major problem that restricts their use.With the development of wireless charging,this paper proposes an online UAV path planning method considering wireless charging based on the deep reinforcement learning.The mission capability of UAVs can be improved by applying wireless charging.We first construct the UAV power consumption model and the wireless charging model.A deep neural network model with dynamic context is designed according to the power constraints of the UAV.The UAV path can be constructed by the encoder-decoder architecture of the model.The model is trained offline through deep reinforcement learning,and is applied to the online optimization of the UAV path.Experimental results show that,the solving speed of the proposed method is more than four times and a hundred times faster than traditional optimization and deep reinforcement learning methods on CPU and GPU,respectively.

deep reinforcement learningunmanned aerial vehiclesintelligent optimizationwireless charging

张涛、刘威、王锐、李凯文、徐万里

展开 >

国防科技大学系统工程学院,湖南长沙 410073

军事科学院系统工程研究院,北京 100080

深度强化学习 无人机 智能优化 无线充电

国家自然科学基金

72071205

2024

控制理论与应用
华南理工大学 中国科学院数学与系统科学研究院

控制理论与应用

CSTPCD北大核心
影响因子:1.076
ISSN:1000-8152
年,卷(期):2024.41(1)
  • 21