首页|基于工况知识引导注意力时间卷积网络的烧结终点预测

基于工况知识引导注意力时间卷积网络的烧结终点预测

扫码查看
烧结终点位置的实时准确预测对于优化烧结工艺具有重要的意义.针对烧结过程中强非线性和动态时变性造成烧结终点高精度预测难的问题,本文提出了一种基于工况知识引导注意力时间卷积网络(AM-TCN)模型.首先,构建堆叠的时间卷积模块用于充分提取烧结过程数据中深层次的非线性特征;其次,将历史工况知识引入注意力机制,引导模型在保留过程数据时序特征的同时区分不同特征的重要性;最后,构建预测模型用于烧结终点位置在线预测.工业数据实验表明,所提AM-TCN模型具有较好的烧结终点预测精度,对提升烧结过程热状态稳定性具有重要意义.
Burning through point prediction based on working condition know-ledge guided attention mechanism temporal convolutional network
The precise and real-time prediction of the burning through point(BTP)is essential for optimizing process operation.However,due to the strong nonlinearity and dynamic time-varying characteristics of the sintering process,high-precision prediction of the BTP has been challenging.In this paper,an attention mechanism temporal convolutional network(AM-TCN)model is proposed based on the knowledge of working conditions.First,stacked temporal convolution blocks are developed to extract deep nonlinear features in the sintering process data.Second,the attention mechanism incorporates the knowledge of historical working conditions,allowing the model to identify the significance of various extracted features while preserving the time series features of the process data.Finally,an online BTP prediction model can be established.The results of experiments using industrial data illustrate that the proposed AM-TCN model has good BTP prediction accuracy,which is critical in improving the stability of the thermal state during the sintering process.

attention mechanismtemporal convolutional networkcondition knowledgeburn through pointprediction

方怡静、蒋朝辉、桂卫华、潘冬

展开 >

中南大学自动化学院,湖南长沙 410083

南洋理工大学化学化工与生物工程学院,新加坡 637459

注意力机制 时间卷积网络 工况知识 烧结终点 预测

国家重大科研仪器研制项目国家自然科学基金中央高校基本科研业务费专项中南大学项目

61927803617734062020zzts572

2024

控制理论与应用
华南理工大学 中国科学院数学与系统科学研究院

控制理论与应用

CSTPCD北大核心
影响因子:1.076
ISSN:1000-8152
年,卷(期):2024.41(3)
  • 14