Content and concentration of rare earth element components based on multi-task learning multi-objective optimization multidimensional soft measurement
Online soft measurement of the component content of each element in a mixed rare earth extraction solution is a prerequisite for optimizing the continuous extraction production process and ensuring high purity of the product.Existing soft measurement methods can solve for individual rare earth element fractions independently,but ignore the commonality between multi-element fractions or between fractions and other relevant factors(e.g.concentration).A multi-task learning approach is used to explore the commonality between the component content of multiple rare earth elements and between the component content and concentration in soft measurements of rare earth elements.Firstly,a multi-task deep neural network is constructed to improve the generalization ability and robustness of the model.Secondly,a multi-objective optimization algorithm is proposed to improve the prediction accuracy of each task by searching the Pareto optimum.After several sets of comparison experimental results,it is shown that the method has the best performance when the multi-element component content or multi-element component content and concentration are trained at the same time,which can meet the accuracy and real-time performance of online detection of rare earth elemental component content.