首页|变负载机械手轨迹跟踪控制器设计

变负载机械手轨迹跟踪控制器设计

扫码查看
本文针对具有变负载的不确定刚性机械手系统,提出了一种依赖平均驻留时间的神经网络自适应切换控制策略.本控制方案将夹持不同负载的刚性机械手系统视为切换系统,即根据负载的不同将整个系统分为若干子系统,并基于平均驻留时间原则对每个子系统分别设计控制器.在各子系统中,分别采用径向基函数(RBF)神经网络逼近系统结构参数,以避免控制器对系统精确模型的依赖.同时,基于神经网络设计鲁棒补偿项,以抑制集总扰动对系统的影响.然后,利用多Lyapunov函数方法证明了轨迹跟踪误差的一致最终有界性.最后,通过仿真验证,所提出的控制方案不仅可实现变负载机械手期望轨迹的高精度跟踪,而且可有效削弱输入力矩的抖振.
Trajectory tracking controller design for manipulator with variable loads
In this paper,a neural network adaptive switching control strategy based on the average dwell time is proposed for uncertain rigid manipulator system with variable loads.In this proposal,the rigid manipulator system holding different loads is treated as a switched system,which is divided into several subsystems according to different loads,and then different sub controllers are designed for each subsystem based on the average dwell time principle.In every subsystem,the RBF neural network is utilized for approaching to the system structural parameters to avoid the dependence of the controller on accurate system model.Meanwhile,the RBF neural network is employed to design the robust compensation term to suppress the influence of lumped disturbance of the system.Then,the uniform final boundedness of trajectory tracking error is verified by multi-Lyapunov function method.Finally,the simulation results show that the proposed algorithm can not only achieve the high-precision tracking of the manipulator with variable loads,but effectively eliminate the chattering of input torque.

switching controllerrobotic manipulatorneural networkaverage dwell timeadaptive control

赵兴强、刘振、朱全民

展开 >

青岛大学自动化学院,山东青岛 266071

青岛大学山东省工业控制技术重点实验室,山东青岛 266071

英国西英格兰大学工程设计与数学系,英国布里斯托BS161QY

切换控制器 机械手 神经网络 平均驻留时间 自适应控制

国家自然科学基金国家自然科学基金山东省自然科学基金山东省高等学校优秀青年创新团队支持计划

6180321762003231ZR2023MF0292022KJ142

2024

控制理论与应用
华南理工大学 中国科学院数学与系统科学研究院

控制理论与应用

CSTPCD北大核心
影响因子:1.076
ISSN:1000-8152
年,卷(期):2024.41(4)
  • 1
  • 24