首页|多舱共配绿色车辆路径问题的改进变邻域搜索算法

多舱共配绿色车辆路径问题的改进变邻域搜索算法

扫码查看
针对社区团购前置仓配送场景中"多中心、高时效、多品类、高排放"难题,本文提出多车场带时间窗的绿色多舱车车辆路径问题(MDMCG-VRPTW),构建混合整数线性规划模型,并设计改进的变邻域搜索算法(IVNS)实现求解。采用两阶段混合算法构造高质量初始解。提出均衡抖动策略以充分探索解空间,引入粒度机制以提升局部搜索阶段的寻优效率。标准算例测试结果验证了两阶段初始解构造算法和IVNS算法的有效性。仿真实验结果表明,模型与算法能够有效求解MDMCGVRPTW,且改进策略提高了算法的求解效率和全局搜索能力。最后,基于对配送策略和时效性的敏感性分析,为相关配送企业降本增效提供更多决策依据。
Improved variable neighborhood search algorithm for multi-compartment green vehicle routing problem
Focusing on the problem of"multiple depots,punctuality,multiple products and energy intensity"arising in the distribution scenario of community group purchase,this paper studies the multi-depot multi-compartment green vehicle routing problem with time windows(MDMCGVRPTW).A mixed integer linear programming(MILP)model and an improved variable neighborhood search(IVNS)algorithm are proposed.High quality initial solutions are obtained by a two-stage hybrid(2SH)algorithm.A new balanced shaking heuristic is designed to fully explore the solution space,and a granularity mechanism is introduced to improve the efficiency of local search.The 2SH algorithm and the IVNS algorithm have already demonstrated their effectiveness in solving the benchmarks.The experiment results based on the simulation examples show that the proposed model and algorithm can effectively solve the MDMCGVRPTW,and the improved strategies enhance the exploitation capability of the IVNS algorithm.Finally,some management insights for relevant distribution enterprises are given based on the sensitivity analysis of distribution strategy and timeliness to achieve cost reduction and efficiency increase.

multi-compartment distributiongreen vehicle routingbalanced shakinggranular mechanismimproved variable neighborhood search

肖友刚、曹健、陈婉茹、张得志、李双艳

展开 >

中南大学交通运输工程学院,湖南长沙 410075

中南林业科技大学物流与交通学院,湖南长沙 410004

多舱共配 绿色车辆路径 均衡抖动 粒度局部搜索 改进变邻域搜索算法

国家自然科学基金湖南省自然科学基金湖南省社会科学基金

716721932021JJ3085719YBA378

2024

控制理论与应用
华南理工大学 中国科学院数学与系统科学研究院

控制理论与应用

CSTPCD北大核心
影响因子:1.076
ISSN:1000-8152
年,卷(期):2024.41(4)
  • 1
  • 26