首页|基于分层运动分解的飞行机械臂视觉伺服控制

基于分层运动分解的飞行机械臂视觉伺服控制

扫码查看
飞行机械臂系统具有主动作业能力,通过搭载视觉传感器感知周围环境,系统的自主能力将进一步提高。然而,考虑到无人机的欠驱动和整个系统的非线性特性,飞行机械臂系统的视觉伺服控制仍然是一项具有挑战性的工作。本文在充分考虑机械臂对无人机的力/力矩作用后,提出了一种基于分层运动分解的飞行机械臂视觉伺服控制方案。首先,对飞行机械臂系统的运动学和动力学模型进行分析。然后,根据所得的相机运动学模型,通过基于图像的视觉伺服控制获得相机的期望速度,进而制定无人机和机械臂的速度分配策略。在考虑机械臂运动时对无人机产生的力/力矩影响,设计了底层的飞行控制器。最后,在与现有方法的仿真对比中可以看出,所提方法具有良好的控制性能,对图像特征点位置的不确定性及图像噪声也表现了较好的鲁棒性。
Visual servoing control for aerial manipulator via hierarchical motion decomposition
The aerial manipulator system has active operation capability,and the autonomous level of the system would be further improved if the aerial manipulator could perceive the surrounding environment by visual sensors.However,considering the underactuation of the multirotor and the nonlinear property of the overall system,visual servoing control of aerial manipulator systems is still a challenging work.This paper proposes a hierarchical motion decomposition based visual servoing control scheme for aerial manipulator sytems with full consideration of the force/torque effect exerted by the robotic arm on the fuselage of the unmanned aerial vehicle(UAV).Firstly,the kinematics and dynamics model of the aerial manipulator system is analyzed.Then,based on the obtained camera's kinematics,the desired speed of the camera is obtained through image-based visual servo control,and the speed allocation strategy of the UAV and the manipulator is formulated.After considering the influence of the effect generated by the robotic arm on the UAV,the low-level flight controller is provided.Finally,compared with the existing method,the proposed method has better control performance and also presents good robustness against the uncertainty of image feature points position and image noise.

multirotor UAVaerial manipulatorvisual servoing control

张兆鹏、何慰、梁潇、韩建达、方勇纯

展开 >

南开大学人工智能学院机器人与信息自动化研究所,天津300350

南开大学天津市智能机器人技术重点实验室,天津300350

多旋翼无人机 飞行机械臂 视觉伺服控制

国家自然科学基金国家自然科学基金国家自然科学基金天津市青年人才托举工程项目先进计算与关键软件海河实验室项目

622731876223301191848203TJSQNTJ-2020-2122HHXCJC00003

2024

控制理论与应用
华南理工大学 中国科学院数学与系统科学研究院

控制理论与应用

CSTPCD北大核心
影响因子:1.076
ISSN:1000-8152
年,卷(期):2024.41(5)
  • 21