首页|求解能耗成本平衡的分布式阻塞流水线调度群体迭代贪婪算法

求解能耗成本平衡的分布式阻塞流水线调度群体迭代贪婪算法

扫码查看
在经典分布式流水车间调度问题基础上,本文构建了具有序列相关准备时间的分布式阻塞流水线调度问题(DBFSP-SDST)的混合线性整数规划模型(MILP),以均衡各工厂能耗成本为优化目标,提出了基于群体优化的迭代贪婪算法(PEIG)。该算法针对零缓冲区和多工厂生产模式,设计了问题特性的启发式方法;针对迭代贪婪算法(IGA)的优势和不足,提出了基于群体的局部搜索策略、多邻域搜索结构和增强的跨工厂破坏重构方法,以进一步平衡所提算法的全局探索和局部搜索能力。通过270个测试算例的数值仿真,以及与最新4种代表算法的统计比较,本文验证了所提PEIG算法的优越性,能为中大规模的DBFSP_SDST提供更优的调度方案。
An iterated greedy algorithm based on population evolution for distributed blocking flowshop scheduling with balanced energy costs criterion
Based on the classical distributed flowshop scheduling problem,this paper constructs the mixed linear in-teger programming mode(MILP)of distributed blocking flowshop scheduling problem with sequence-dependent setup time(DBFSP_SDST),and the optimization objective is to balance the energy consumption cost of each factory.To tack-le this problem,an iterated greedy algorithm based on the population evolution(PEIG)is proposed.In PEIG,firstly,a problem-specific heuristic is well designed based on the blocking constraint and multiple factories model.Secondly,for the advantages and disadvantages of the traditional IG algorithm,the local search strategies based on the population operation,the multiple neighborhood search structures,and the cross-factory destruction-reconstruction strategy are proposed to fur-ther balance the global exploration and exploitation abilities of the proposed algorithm.The 270 test instances numerical simulations and statistical comparison with four representative algorithms show that the proposed algorithm has superior performance and can provide a better scheduling scheme for medium and large-scale DBFSP_SDST than the compared algorithms.

distributedblocking flowshop schedulingenergy consumption costlocal search strategy based on popu-lationiterated greedy algorithm

韩雪、王玉亭、韩玉艳、李俊青

展开 >

聊城大学计算机学院,山东聊城 252000

山东师范大学计算机学院,山东济南 250000

分布式 阻塞流水调度 能耗成本 群体局部搜索策略 迭代贪婪算法

国家自然科学基金项目国家自然科学基金项目国家自然科学基金项目聊城大学光岳青年学者创新团队项目

618031926217321662173356LCUGYTD2022-03

2024

控制理论与应用
华南理工大学 中国科学院数学与系统科学研究院

控制理论与应用

CSTPCD北大核心
影响因子:1.076
ISSN:1000-8152
年,卷(期):2024.41(6)