首页|基于两阶段邻域搜索的污水处理过程智能优化控制

基于两阶段邻域搜索的污水处理过程智能优化控制

扫码查看
为了更好地平衡污水处理过程中出水水质与能耗的关系,本文提出一种基于两阶段邻域搜索的污水处理过程智能优化控制方法.首先,建立以能耗和出水水质为优化目标的多目标优化模型;其次,提出一种基于两阶段邻域搜索的SPEA2(2-NS-SPEA2)对所建立的模型进行优化,通过对外部档案集中稀疏解的周围进行两阶段邻域搜索,并利用替代策略对外部档案集进行更新,提高算法的优化性能,获得质量更高的硝态氮浓度和溶解氧浓度的优化设定值;最后,利用PID控制器跟踪控制所确定的优化设定值,以保证优化方法的准确实施.污水处理过程运行优化控制实验表明:所提方法能够在保证出水水质满足排放标准的前提下,有效地净化水质、降低污水处理过程中产生的能耗.
Intelligent optimization control of wastewater treatment process based on two-stage neighborhood search
In order to better balance the relationship between effluent quality and energy consumption in the wastewater treatment process,an intelligent optimization control method for wastewater treatment process based on two-stage neigh-borhood search is proposed.First,a multi-objective optimization model with energy consumption and effluent quality as targets is established.Secondly,strength Pareto evolutionary algorithm 2 based on two-stage neighborhood search(2-NS-SPEA2)is proposed to optimize the constructed model.Through the two-stage neighborhood search around the sparse solution of the external archive,and the replacement strategy is used to update the external archive,so as to improve the op-timization performance of the algorithm and obtain better quality of the optimal set-points of nitrate nitrogen concentration and dissolved oxygen concentration.Finally,the PID controller is used to track and control the determined optimal set-points to ensure the accurate implementation of the optimization method.The operation optimization control experiment of wastewater treatment process shows that the proposed algorithm can effectively purify the water quality and reduce the energy consumption in the wastewater treatment process under the premise of ensuring that the effluent quality meets the discharge standards.

wastewater treatment processenergy consumptioneffluent qualitystrength Pareto evolutionary algorithm 2(SPEA2)

李洪澎、周平

展开 >

东北大学流程工业综合自动化国家重点实验室,辽宁沈阳 110819

污水处理过程 能耗 水质 改进强度帕累托算法(SPEA2)

国家自然科学基金项目国家自然科学基金项目国家自然科学基金项目兴辽英才项目

618909346189093061991400XLYC1907132

2024

控制理论与应用
华南理工大学 中国科学院数学与系统科学研究院

控制理论与应用

CSTPCD北大核心
影响因子:1.076
ISSN:1000-8152
年,卷(期):2024.41(9)