首页|基于广义扰动估计的磁悬浮球系统高精度位置控制

基于广义扰动估计的磁悬浮球系统高精度位置控制

扫码查看
本文针对磁悬浮球系统在非匹配多源扰动影响下位置控制精度问题,提出了一种基于广义扰动估计的位置控制方法。首先,设计Luenberger观测器对系统状态变量进行估计,并考虑扰动己知信息,利用内模原理设计广义扰动估计器对多源扰动进行估计;然后,为消除非匹配多源扰动对位置输出的影响将扰动估计及其导数引入控制律设计,并对其设计扰动补偿增益,同时设计参考输入补偿增益解决在非匹配扰动下对时变参考位置的跟踪精度问题;其次,对所提方法进行稳定性和抗干扰性能分析,证明了所提方法在非匹配多源扰动下可实现对磁悬浮球系统的高精度位置控制;为了验证所提方法的有效性,在本文最后分别利用MATLAB/Simulink和磁悬浮球实验平台对所提方法进行了仿真和实验验证。
High precision position control of magnetic levitation ball system based on generalized disturbance estimation
In this paper,a position control method based on generalized disturbance estimation is proposed to solve the problem of position accuracy of the magnetic levitation ball system under the mismatched multiple disturbances.Firstly,a Luenberger observer is designed to estimate the state variables of the system.Considering the known disturbance infor-mation,a generalized disturbance estimator is designed to estimate the disturbance by using the internal model principle.Then,the disturbance estimation and its derivative are introduced into the control law design to eliminate the influence of the mismatched multiple disturbances,and the disturbance compensation gain is designed for the control law.Meanwhile,the reference input compensation gain is designed to solve the problem of tracking the time-varying reference under mis-matched disturbance.Then,the stability and anti-disturbance performance of the proposed method are analyzed,and it is proved that the proposed method can achieve high precision position control of the magnetic levitation ball system under mismatched multiple disturbances.In order to verify the effectiveness of the proposed method,the MATLAB/Simulink and the magnetic levitation ball experimental platform are used to simulate and verify the proposed method.

magnetic levitation ball systemmismatched multiple disturbancesgeneralized disturbance estimationdisturbance rejection

王军晓、陆勤坤、俞立

展开 >

浙江工业大学信息工程学院,浙江 杭州 310023

磁悬浮球系统 非匹配多源扰动 广义扰动估计 扰动抑制

国家自然科学基金项目

62273306

2024

控制理论与应用
华南理工大学 中国科学院数学与系统科学研究院

控制理论与应用

CSTPCD北大核心
影响因子:1.076
ISSN:1000-8152
年,卷(期):2024.41(9)