首页|基于模型预测控制的潜水器动态控制分配

基于模型预测控制的潜水器动态控制分配

扫码查看
潜水器系统在水下工作时,会受到多种干扰因素影响.同时,为了提高机动性与容错能力,载人潜水器采用了过驱动设计.针对上述问题,本文设计了一种基于抗干扰控制器与动态控制分配的双层控制结构,使得受干扰影响的潜水器系统在满足相关约束条件的前提下,能够将期望的力与力矩分配到各个推进器以完成控制目标,并克服了静态控制分配方法忽略执行器动态特性的缺点.首先,建立潜水器的动力学模型与执行器的动态模型;其次,基于干扰观测器的干扰估计信息利用反步法设计运动控制器,获得期望控制律;此外,考虑执行器动态特性,设计基于模型预测控制(MPC)的动态控制分配算法,求取每一个执行器的实际推力;最后,使用MATLAB进行数值仿真,验证本文控制方法的有效性与优越性.
Dynamic control allocation of submersible vehicle by using model predictive control
Submersible vehicles will be affected by different kinds of disturbances in the underwater environments.Meanwhile,in order to improve the working performance and fault tolerance capability,a part of submersible vehicles are designed as over-actuated systems.A double-layer control structure which includes a disturbance observer based controller and a dynamic control allocation algorithm is proposed for the manned submersible vehicle in this paper.The dynamic control allocation distributes the forces and moments among the redundant actuators to fulfill the control objectives under a set of constraints for the submersible vehicle system affected by disturbances.Different from the static control allocation algorithm,the proposed algorithm is able to take the actuator dynamics into account.First of all,both the dynamic models of the manned submersible vehicle and the actuators are established.Secondly,based on the estimated disturbances by the disturbance observer,a motion controller is designed with the back-stepping algorithm for the manned submersible vehicle.Then,a dynamic control allocation method based on the model predictive control(MPC)is proposed to address the over-actuated problem.Finally,some numerical simulation results are given to demonstrate the effectiveness and the superiority of the proposed two-layer control scheme in this paper.

model predictive controldynamic control allocationover-actuateddisturbance rejectionmanned sub-mersible vehicle

方星、浦吉铭、刘飞

展开 >

江南大学自动化研究所轻工过程先进控制教育部重点实验室,江苏无锡 214122

无锡气动技术研究所有限公司,江苏无锡 214072

模型预测控制 动态控制分配 过驱动 抗干扰控制 载人潜水器

国家自然科学基金项目装备预研教育部联合基金项目中国博士后科学基金项目中国博士后科学基金项目

622731658091B0322592023T1604932021M702505

2024

控制理论与应用
华南理工大学 中国科学院数学与系统科学研究院

控制理论与应用

CSTPCD北大核心
影响因子:1.076
ISSN:1000-8152
年,卷(期):2024.41(9)