首页|基于MEWMA的自适应KLPP的非线性过程故障检测

基于MEWMA的自适应KLPP的非线性过程故障检测

扫码查看
针对非线性动态过程中的微小扰动问题,本文提出一种基于多元指数加权移动平均(MEWMA)的自适应核局部保持投影(KLPP)的非线性过程故障检测算法。首先,构造一个具有动态特性的数据矩阵,并引入核函数,执行KLPP算法;其次,白化KLPP提取的特征分量,并采用MEWMA预测非线性动态过程中的均值漂移;最后,将估计的均值漂移与白化后的特征分量相结合,构造一个自适应监控统计量,并利用核密度估计确定其控制限。将所提出的监测方案应用于一个非线性数值例子和(TE)过程进行仿真分析,仿真结果表明,该方法具有可行性和优越性。
Fault detection of nonlinear process based on adaptive KLPP of MEWMA
For the small disturbance problem in nonlinear dynamic process,a fault detection of nonlinear process algo-rithm based on the adaptive kernel locality preserving projections(KLPP)of multivariate exponentially weighted moving average(MEWMA)is proposed in this paper.Firstly,a data matrix with dynamic characteristics is constructed,and the kernel function is introduced to execute the KLPP algorithm.Secondly,the feature vectors extracted by the KLPP are whitened.The MEWMA is used to predict the mean shifts in nonlinear dynamic process.Finally,an adaptive monitoring statistic is constructed by combining the estimated mean shift with the whitened feature vectors,and its control limit is determined by using the kernel density estimation.The proposed monitoring scheme is applied to a nonlinear numerical example and the TE process for simulation analysis.The simulation results show that the method is feasible and superior.

fault detectionnonlinear processmultivariate exponentially weighted moving averageadaptive monitor-ing statistickernel locality preserving projections algorithm

郭金玉、王霞、李元

展开 >

沈阳化工大学信息工程学院,辽宁沈阳 110142

故障检测 非线性过程 多元指数加权移动平均 自适应监控统计量 核局部保持投影算法

2024

控制理论与应用
华南理工大学 中国科学院数学与系统科学研究院

控制理论与应用

CSTPCD北大核心
影响因子:1.076
ISSN:1000-8152
年,卷(期):2024.41(11)