首页|基于ILSTM网络的工业过程运行状态评价

基于ILSTM网络的工业过程运行状态评价

扫码查看
实时掌握复杂生产过程的运行状态对保证企业综合经济效益最大化具有重要意义。针对工业过程非线性、动态特性显著问题,本文提出了一种基于综合经济指标驱动的长短期记忆(ILSTM)网络,用来对复杂工业过程的运行状态进行评价。该方法利用综合经济指标信息和重构约束,迫使LSTM网络在学习过程中关注与综合经济指标相关的动态特征。进一步级联状态识别模型,构建完整的运行状态评价方法框架。针对过程的非优运行状态,提出一种基于重构的贡献图方法,通过对比各过程变量对非优状态的贡献率识别导致过程运行状态非优的主要原因变量。最后,通过重介质选煤过程验证了所提方法的有效性。
Operating performance assessment of industrial process based on ILSTM network
It is of great significance to master the operating performance of complex production process in time to ensure the maximization of comprehensive economic benefits of enterprises.For the problem of nonlinear,dynamic characteris-tics of industrial processes,this paper proposes a comprehensive economic index driven long short-term memory(ILSTM)network for evaluating the operating performance of complex industrial processes.This method utilizes comprehensive economic indexes information and reconstruction constraints to force the LSTM network to focus on the dynamic features related to comprehensive economic indexes in the learning.Further,cascade the performance assessment model to con-struct a complete operating performance assessment framework.For the non-optimal operating performance of process,a reconstruction-based contribution plot method is proposed to identify the main variables by comparing the contribution rates of each process variable to the non-optimal performance.Finally,the effectiveness of the proposed method is demonstrated on the dense medium coal preparation process.

dynamic characteristicscomprehensive economic indexesLSTM networkoperating performance assess-mentnon-optimal factor identification

廖霜霜、褚菲、傅逸灵、王军、王福利

展开 >

中国矿业大学信息与控制工程学院地下空间智能控制教育部工程研究中心,江苏徐州 221116

中国矿业大学人工智能研究院,江苏徐州 221116

东北大学信息科学与工程学院,辽宁沈阳 110819

动态特性 综合经济指标 LSTM网络 运行状态评价 非优因素识别

2024

控制理论与应用
华南理工大学 中国科学院数学与系统科学研究院

控制理论与应用

CSTPCD北大核心
影响因子:1.076
ISSN:1000-8152
年,卷(期):2024.41(11)