首页|基于高斯似然近似的自适应球面径向积分滤波算法

基于高斯似然近似的自适应球面径向积分滤波算法

Adaptive spherical-radical filter based on Gaussian likelihood approximation

扫码查看
针对量测噪声较小的环境下传统滤波算法容易出现偏差增大的实际问题,基于高斯近似原理,提出一种基于高斯似然近似的球面径向积分滤波(SRGLAF)算法。为进一步解决量测未知环境下的状态估计问题,充分结合CKF等确定性采样型滤波算法和SRGLAF的优势,设计一种基于高斯似然近似的自适应球面径向积分滤波(ASRGLAF)算法。仿真结果表明:SRGLAF能够提高量测噪声较小环境下的估计精度,而在量测噪声未知环境中, ASRGLAF能够有效地进行状态估计,具有明显的滤波优势。
For the problem that traditional filtering algorithms tend to deteriorate when the measurement noise covariance is very low, a spherical-radical filter based on Gaussian likelihood approximation(SRGLAF) is proposed. To solve the state estimation problem with unknown measurement noise, an adaptive spherical-radical filter based on Gaussian likelihood approximation(ASRGLAF) is proposed. The simulation results show that the SRGLAF can improve the estimation accuracy with low measurement noise, and the ASRGLAF is effective in the scenario with unknown measurement noise.

nonlinear filteringspherical-radical ruleGaussian approximationunscented Kalman filtercubature Kalman filteradaptive filtering

刘俊、刘瑜、徐从安、齐林、孙顺

展开 >

海军航空工程学院信息融合研究所,山东烟台264001

北京航空航天大学电子信息工程学院,北京100191

非线性滤波 球面径向积分 高斯近似 不敏卡尔曼滤波 容积卡尔曼滤波 自适应滤波

国家自然科学基金面上项目

61471383

2016

控制与决策
东北大学

控制与决策

CSTPCDCSCD北大核心EI
影响因子:1.227
ISSN:1001-0920
年,卷(期):2016.31(6)
  • 3
  • 3