控制与决策2024,Vol.39Issue(1) :26-38.DOI:10.13195/j.kzyjc.2022.0432

一种基于超粒子引导的自适应知识迁移多任务差分进化算法

A super-particle guided multifactorial differential evolution algorithm with adaptive knowledge transfer

孙倩 王磊 徐庆征 夏坤 李薇
控制与决策2024,Vol.39Issue(1) :26-38.DOI:10.13195/j.kzyjc.2022.0432

一种基于超粒子引导的自适应知识迁移多任务差分进化算法

A super-particle guided multifactorial differential evolution algorithm with adaptive knowledge transfer

孙倩 1王磊 2徐庆征 3夏坤 1李薇1
扫码查看

作者信息

  • 1. 西安理工大学陕西省网络计算与安全技术重点实验室,西安 710048
  • 2. 西安理工大学陕西省网络计算与安全技术重点实验室,西安 710048;陕西理工大学陕西省工业自动化重点实验室,陕西汉中 723001
  • 3. 国防科技大学信息通信学院,武汉 430035
  • 折叠

摘要

针对传统多任务优化算法(MTEA)存在负向知识迁移、迁移算子效率低下等问题,提出一种基于超粒子引导的自适应知识迁移的多任务差分进化算法(SAKT_MFDE).首先,通过任务之间的相似程度自适应地调节任务之间的交配概率,增大任务之间的正向迁移;其次,利用超粒子引导算法的搜索方向,进一步提升算法整体的优化效率;最后,通过多任务基准函数进行仿真实验来评价改进算法的寻优性能.实验结果表明,所提出算法可以有效规避任务之间的负向迁移,提高相似度较低的任务组的优化性能.

Abstract

Aiming at the problems of negative knowledge transfer and low efficiency of the traditional multi-tasking optimization algorithm(MTEA),a multi-tasking differential evolution algorithm based on super-particle guided adaptive knowledge transfer(SAKT_MFDE)is proposed.Firstly,the algorithm adaptively adjusts the mating probability between tasks by the similarity degree between tasks to increase the forward migration between tasks.Secondly,the super-particle is used to guide the search direction of the algorithm,which further improves the overall optimization efficiency of the algorithm.The optimization performance of the improved algorithm is evaluated by the simulation of the multi-task benchmark function.The experimental results show that the proposed algorithm can effectively avoid the negative migration between tasks and improve the optimization performance of the task group with low similarity.

关键词

多任务进化算法/知识迁移/超粒子

Key words

multi-tasking evolution algorithm/knowledge transfer/super-particle

引用本文复制引用

基金项目

国家自然科学基金项目(62176146)

出版年

2024
控制与决策
东北大学

控制与决策

CSTPCD北大核心
影响因子:1.227
ISSN:1001-0920
参考文献量23
段落导航相关论文